

Thinking Emoji
Drexel University
3141 Chestnut St, Philadelphia, PA 19104

Covid Crossfire
4​th​ September 2020

Introduction

Team Members:
Alex Hung, Lester Chacon-Posada, Jacky Chen

Code Repository Link:
https://gitlab.cci.drexel.edu/ah3472/cs375_project

Overview:
COVID Crossfire is a 2D roguelike, bullet-hell web game. The user will play as a white blood cell
that travels through blood vessels while fighting off a particular disease that originates from
bats, COVID-19. The user has to create an account to play. This system allows the preservation
of the user’s high score which will be displayed in a global ranking system.

Architecture

Technologies Used:
- Javascript, HTML, CSS:​ used to program basic UI, game mechanics, and server code
- Firebase:​ used for user authentication and the storage of high score data of players
- Pixi.js:​ used for rendering and animating images on the canvas

- One obstacle was figuring out why the resources in the application loader was
not rendering a specific sprite.

- Pixi.js works by setting the attribute of the script source to the Pixi.js file. By doing
so, we were able to gain access to render sprites and animations using their API
documentation.

- Node.js:​ used to locally run our server

https://gitlab.cci.drexel.edu/ah3472/cs375_project

Architecture Overview:

Upon opening the application, a login page will show. If the client does not have an account,
they can create a new account with an email, username, and password. This information would
be stored in our database using Firebase. This information will associate that selected account
with an unique ID and any highscores the client makes will be reflected upon that account. If the
client already has an account that is in the database system, they can log in with their email and
password they had created.

One of our main communication systems from client to server is our game’s scoreboard feature.
In every game, the client will have a default score of 0 and points will be given to them upon
defeating enemies. This occurs up until the player dies. Upon death their score is then sent to
our server, where their score and their username will be stored and shown in a ranking system.

Reflection

Original Planned Features:

Player sprite Enemy sprites Tilemaps Different selections of
weapon

Collision Detection Transition between
scenes/maps

Hit points
implementation

Defeating
enemies/Pick up loots

Music/Sound
Effects

Damage
implementation

Dynamically generated
rooms

Score implementation

Animation Bullet Projectile Create multiple
enemies

Boss fights

Create multiple
environmental
settings

Deployment Create account/login
authentication

Saving player’s
highscore in a
database

Features Implemented:
*Green = Features Implemented
*Red = Incomplete Features

Player sprite Enemy sprites Tilemaps Different selections of
weapon

Collision Detection Transition between
scenes/maps

Hit points
implementation

Defeating
enemies/Pick up loots

Music/Sound
Effects

Damage
implementation

Dynamically generated
rooms

Score implementation

Animation Bullet Projectile Create multiple
enemies

Boss fights

Create multiple
environmental
settings

Deployment Create account/login
authentication

Saving player’s
highscore in a
database

Incomplete Features

Create multiple
enemies

Boss Fights Transitions
between
scenes/maps

Deployment Create multiple
environmental
settings

● We did not make these features simply due to time constraints and we decided to

prioritize key features that show the main points and the theme of our game.

Things to do differently next time:
Alex:

- Come up with an game architecture before implementing because our codebase was
very messy because we did not have a thought out plan.

- Find another way to implement colliders because our method used a lot of rectangles so
it had to loop through each rectangle and check for collision. Especially with the number
of bullets.

Lester:

- Be more clear on the theme of the tilemap I made. The enemies did not really fit the
theme of the map (The blood cell inside the body). I had covid sprites but they were all
bad in my opinion. Going back to make a good model for a COVID enemy is something I
would do.

- Many ideas and sprites that I created were not used in the final product for various
reasons. Next time I would have taken a step back and see what was needed rather
than making a lot of sprites that would not even make it to the game.

Jacky:

- Find a better method on implementing the rotation of the player’s weapon based on the
position of the mouse cursor. The gun is able to turn from the left to the right but cannot
turn from the top and the bottom direction, which makes the shooting portion of the game
inefficient.

- Implement a better movement control for the player. When the player goes diagonally,
the speed is much faster compared to moving in 4 directions.

