diff --git a/keras_training.py b/keras_training.py deleted file mode 100644 index 09c08ee7dc80926bdcb3c6f41a7e64929f7b9a89..0000000000000000000000000000000000000000 --- a/keras_training.py +++ /dev/null @@ -1,104 +0,0 @@ -import tensorflow as tf -from tensorflow import keras -import numpy as np -import matplotlib.pyplot as plt -import serial -import time -ser = serial.Serial( - port='/dev/ttyACM0', - baudrate=19200, - parity=serial.PARITY_ODD, - stopbits=serial.STOPBITS_TWO, - bytesize=serial.SEVENBITS -) -plt.rcParams['interactive'] == True -fashion_mnist = keras.datasets.fashion_mnist -(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() -class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', - 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] -train_images = train_images / 255.0 -test_images = test_images / 255.0 -plt.figure(figsize=(10,10)) -for i in range(25): - plt.subplot(5,5,i+1) - plt.xticks([]) - plt.yticks([]) - plt.grid(False) - plt.imshow(train_images[i], cmap=plt.cm.binary) - plt.xlabel(class_names[train_labels[i]]) -plt.show() -model = keras.Sequential([ - keras.layers.Flatten(input_shape=(28, 28)), #Transforms the format of the images from a 2d-array (of 28 by 28 pixels), to a 1d-array of 28 * 28 = 784 pixels - keras.layers.Dense(128, activation=tf.nn.relu), #This is the fully connected layers - keras.layers.Dense(10, activation=tf.nn.softmax) #Output layer -]) -model.compile(optimizer=tf.train.AdamOptimizer(), - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) -model.fit(train_images, train_labels, epochs=5) -test_loss, test_acc = model.evaluate(test_images, test_labels) - -print('Test accuracy:', test_acc) -predictions = model.predict(test_images) -np.argmax(predictions[0]) -def plot_image(i, predictions_array, true_label, img): - predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] - plt.grid(False) - plt.xticks([]) - plt.yticks([]) - - plt.imshow(img, cmap=plt.cm.binary) - - predicted_label = np.argmax(predictions_array) - if predicted_label == true_label: - color = 'blue' - else: - color = 'red' - - plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], - 100*np.max(predictions_array), - class_names[true_label]), - color=color) - -def plot_value_array(i, predictions_array, true_label): - predictions_array, true_label = predictions_array[i], true_label[i] - plt.grid(False) - plt.xticks([]) - plt.yticks([]) - thisplot = plt.bar(range(10), predictions_array, color="#777777") - plt.ylim([0, 1]) - predicted_label = np.argmax(predictions_array) - - thisplot[predicted_label].set_color('red') - thisplot[true_label].set_color('blue') -i = 0 -plt.figure(figsize=(6,3)) -plt.subplot(1,2,1) -plot_image(i, predictions, test_labels, test_images) -plt.subplot(1,2,2) -plot_value_array(i, predictions, test_labels) -plt.show() -num_rows = 5 -num_cols = 3 -num_images = num_rows*num_cols -plt.figure(figsize=(2*2*num_cols, 2*num_rows)) -for i in range(num_images): - plt.subplot(num_rows, 2*num_cols, 2*i+1) - plot_image(i, predictions, test_labels, test_images) - plt.subplot(num_rows, 2*num_cols, 2*i+2) - plot_value_array(i, predictions, test_labels) -# Single image testing -img = test_images[0] -print(img.shape) -img = (np.expand_dims(img,0)) -print(img.shape) -predictions_single = model.predict(img) -print(predictions_single) -print(np.argmax(predictions_single[0])) -for i in range(0,len(test_images)): - img = test_images[i] - img = (np.expand_dims(img,0)) - predictions_single = model.predict(img) - predict = int(np.argmax(predictions_single[0])) - time.sleep(3) - ser.write(b'%d' % predict) \ No newline at end of file diff --git a/testing.ino b/testing.ino deleted file mode 100644 index 3de3aed7f0992f45d7f300b6b45688d4ba3d56ab..0000000000000000000000000000000000000000 --- a/testing.ino +++ /dev/null @@ -1,103 +0,0 @@ -int incomingByte = 0; - -void setup() { - Serial.begin(19200); - pinMode(13,OUTPUT); - pinMode(12,OUTPUT); - pinMode(11,OUTPUT); - pinMode(10,OUTPUT); - pinMode(9,OUTPUT); - pinMode(8,OUTPUT); - pinMode(7,OUTPUT); - pinMode(6,OUTPUT); - pinMode(5,OUTPUT); - pinMode(4,OUTPUT); -} - -void loop() { - // send data only when you receive data: - if (Serial.available() > 0) { - // read the incoming byte: - incomingByte = Serial.read(); - // say what you got: - Serial.print("I received: "); - Serial.println(incomingByte, DEC); - } - if(incomingByte == 57) - { - digitalWrite(13,HIGH); - delay(1000); - digitalWrite(13,LOW); - delay(1000); - } - else if(incomingByte == 56) - { - digitalWrite(12,HIGH); - delay(1000); - digitalWrite(12,LOW); - delay(1000); - } - else if(incomingByte == 55) - { - digitalWrite(11,HIGH); - delay(1000); - digitalWrite(11,LOW); - delay(1000); - } - - else if(incomingByte == 54) - { - digitalWrite(10,HIGH); - delay(1000); - digitalWrite(10,LOW); - delay(1000); - } - - else if(incomingByte == 53) - { - digitalWrite(9,HIGH); - delay(1000); - digitalWrite(9,LOW); - delay(1000); - } - - else if(incomingByte == 52) - { - digitalWrite(8,HIGH); - delay(1000); - digitalWrite(8,LOW); - delay(1000); - } - - else if(incomingByte == 51) - { - digitalWrite(7,HIGH); - delay(1000); - digitalWrite(7,LOW); - delay(1000); - } - - else if(incomingByte == 50) - { - digitalWrite(6,HIGH); - delay(1000); - digitalWrite(6,LOW); - delay(1000); - } - - else if(incomingByte == 49) - { - digitalWrite(5,HIGH); - delay(1000); - digitalWrite(5,LOW); - delay(1000); - } - - else if(incomingByte == 48) - { - digitalWrite(4,HIGH); - delay(1000); - digitalWrite(4,LOW); - delay(1000); - } -}