Big Data Lab Answer Sheet.

Please complete this answer sheet and turn it in at the beginning of class on
the due date posted in LEARN.

Part I
Part1: | Answer
1 Json lays out the information like a dictioanry labels its
(4 pts) information. It's separated to two columns. The left side is
the key and the right side is the value.
2 XML is formatted similar to a html file. Every content is in
(4 pts) a tag, with subtasks specify the contents a bit more clearly
3 2015 Alabama: 2552
(4 pts) 2015 Alaska: 288
More people live inn Alabama so there is more chance for
people to die by accident
4 I looked at the US food import, the information and data
(6 pts) was fascinating. I prefer JSON, I think it's formatted more
nicely.
Part 2: | Answer
5 It prints the first line "hope is the thing with feathers"” and
(2 pts) counts how many times each word appears
6 Each piece is one line of the poem.
(2 pts)
7 Counting the variables for each line is faster than counting
(2 pts) the variables for the whole poem
8 In stead of counting how many times each word appears,
(2 pts) it changes to count how many times each character
appears.
9 Each line is splitted into words. We create an empty
(2 pts) dictionary, then we use a for loop to loop through all the
words. If the word is already in the dictionary, then add
the count by one, if it's not, store in the dictionary and
count the value




10 The reducer uses each word and its value from the
(2 pts) mapper as an input and emits the number of times the
word is used in the poem
11 The first example would count the amount of times a
(5 pts) word appears in the line and then return emitted it. This
example instead created more instances of the word in
exchange for not counting them
12 Alice: 81.67
(15 pts) |Bob: 68.0
Carol: 67.0
Dave: 78.0
Eve: 63.67
13 Example 2 Student Scores:
(20 pts)

Mapper:

def mapper(key, value):
grade_map = eval(key)
for student in grade_map:
grade = grade_map|[student]
Wmr.emit(student,grade)

Reducer:
def reduce(key, values):
sum = 0
count=0
for value in values:
sum = sum + float(value)
count +=1
if count > 0:
average = sum / count
Wmr.emit(key,average)

OUTPUT:




Alice 81.6666666667
Bob 68.0

Carol 67.0

Dave 78.0

Eve 63.6666666667

EXAPLE 3 Enrollment:

{ ‘Name':’ARISE Academy Charter High School’,
‘Type’.’CS’, ‘Enrollments’:’183’, ‘Male Dropouts’:’1’,
‘Female Dropouts’:’1’, ‘Dropouts’:’2’ }

{ ‘Name’:’ASPIRA Bilingual Cyber Charter School’,
‘Type’:’CS’, ‘Enrollments’:’57’, ‘Male Dropouts’:’2’, ‘Female
Dropouts’:’6’, ‘Dropouts’:’8’ }

{ ‘Name’:’Ad Prima CS’, ‘Type’:’CS’, ‘Enrollments’:’26’,
‘Male Dropouts’:’0’, ‘Female Dropouts’:’0’, ‘Dropouts’:’0’ } {
‘Name’:’Alliance for Progress CS’, ‘Type’:’CS’,
‘Enrollments’:’24’, ‘Male Dropouts’:’0’, ‘Female
Dropouts’:’0’, ‘Dropouts’:’0’ }

{ ‘Name’:’Philadelphia City SD’, “Type’:’SD’,
‘Enrollments’:’63983’, ‘Male Dropouts’:’3092’, ‘Female
Dropouts’:’2644’, ‘Dropouts’:’'5736’ }

Mapper:

def mapper(key,value):
grade map = eval(key)
for student in grade map:
if student == "Enrollments” or student == "Male
Dropouts” or student == "Female Dropouts":
grade = grade map[student]
Wmr.emit(student,grade)

Reducer:




def reducer(key,values):
count=0
for value in values:
count += int(value)
Wmr.emit(key,count)

Outpout:
Enrollments 65273
Female Dropouts 2651

Male Dropouts 3095




