
 

CS 375 - 002 

Starlink Tracker 
Daniel Yun, Mahin Miah, Humaid Mustajab 
Git : ​https://gitlab.cci.drexel.edu/mm4845/starlink-tracker 

 
 

Project Description 

A project designed to collect and display data [i.e. latitude, longitude, elevation, and speed] 

of individual satellites from the Starlink satellite constellation. The satellites are grouped by 

their launch dates. Users have the option of visualizing this data in a detailed table format 

or on a globe map. In the map visualization, users can select a single satellite to see it’s XYZ 

coordinates as well as its corresponding XYZ velocities. The map also includes a feature to 

track that satellite’s path. 

Technologies 

Our website/code structure has 2 main functions that are accessed through the 2 buttons 

displayed on initial page load: ​‘Visualize Starlink in Space’​ and ​‘Get Satellite Orbital 

Data’​ ​[Graphic 1]​.  

Visualize Starlink in Space: ​Onclick, this button brings up an expanded side-bar with a 

clickable list of Starlink launch dates ​[Graphic 2]​. It also adds a toggle button to the left of 

the ‘Visualize Starlink in Space’ button which can be clicked to toggle the state of the 

sidebar. An iframe is also added to the page view and renders a 3d model of Earth using 

the ArcGIS API and custom parameters. Clicking on any of the launch dates listed in the 

sidebar gets satellite tracking data from the n2yo.com API in TLE format which is parsed on 

our server. The map parsed data is then sent to the mapping API which renders out the 

satellites on the globe ​[Graphic 3]​. The user can then click each satellite shown on the globe 

bringing up additional information about the satellite including its Name, NORAD ID, xyz 

position vector and the xyz velocity vector.    

 

 

https://gitlab.cci.drexel.edu/mm4845/starlink-tracker


 
 

The popup menu also has 2 clickable targets ​‘Track Satellite Path’ ​and ​‘Zoom to’. ​On-click, 

the ​‘Track Satellite Path’ ​button renders a line on the globe that shows the 

calculated/expected path of the satellite around the globe ​[Graphic 4]​. On-click, the ‘​Zoom 

to’​ button pulls the selected satellite into focus.  

Get Satellite Orbital Data: ​Onclick, this button clears up the webpage and brings up an 

interface built in ​React.js and Material-UI​ ​[Graphic 6]​.​ ​Clicking on the dropdown labelled 

‘Launch Group’ pops open a menu with the Starlink launch date groups ​[Graphic 7]​. Clicking 

on one of the launch groups refreshes the table with data from the n2yo API ​[Graphic 8]​. 

The data includes the Satellite Name, Satellite NORAD ID, XYZ position, and XYZ velocity of 

the satellite. The table is paginated with custom row options and a sticky header. If the user 

clicks on the down-arrow icon in each row to the left, it opens up a collapsed table with 

tabled data on the future track of the individual satellite ​[Graphic 10]​. The ‘​Visualize 

Satellite Positions’ ​button also gets enabled when the user selects an item in the 

dropdown and can be clicked to visualise the launch group on a map. The map includes all 

of the same functionality as introduced earlier ​[Graphic 9]​. 

 

 

 

 

 

 

 

 

 

 

 
2 



 
 

 

Application Architecture 

The application starts by serving a static html page; the application’s main page. The server 

can receive a request for data on a group of satellites from the client, and sends that 

request to the N2YO API. The API then responds with data on that group and, after the 

server parses through it, the client receives it. The client can then visualize the data either 

in map form, through the ArcGIS CDN, or table form, through React. The user may also 

create an account at any time through the main page. This information is stored in the 

PostgreSQL database connected to the server. 

 

Graphic 5: Diagram of the Application’s Architecture 

 

 

 

 

 
3 



 
 

Reflection 

Features 

Our original plan for this project was to visual the satellite date in a detailed table format. 

We planned to pull the data from the API and display it with features that would help sort 

the information. However, we actually ended up implementing both a table and map 

option to show the information we pulled from the API. Later on, we also made the 

decision to show the Starlink satellites by their launch dates. The late addition of a map and 

React introduced problems that required more time than we had previously planned for. 

Grievances 

Our biggest obstacle was managing how our data was flowing throughout the project. Since 

we were working with multiple libraries, an API, and a CDN, it became harder and harder to 

manage where items were being held or initialized. It took the team additional time to 

figure out where and how the data was being managed. There were also plans of 

integrating and overlapping certain functions; i.e, when a satellite in the sidebar’s 

dropdown was clicked, that satellite’s path would be shown on the map. If we were to do 

this project again, we would begin with a stricter plan and layout within our code to help 

keep track of the API information throughout the project.  

   

 
4 



 
 

Addendum 

 
Graphic 1: Initial page load 

 
Graphic 2: Website view after clicking ‘Track satellite in Space’ button 

 

 
5 



 
 

 
Graphic 3: Website view after tracking launch group ‘2020.06.13’ 

 
Graphic 4: Website view after clicking ‘Track Satellite Path’ button 

 
6 



 
 

 
Graphic 6: Website view after clicking ‘Get Satellite Orbital Data’ button 

 
Graphic 7: Website view on clicking the ‘Launch Group’ dropdown 

 

 

 
7 



 
 

 
Graphic 8: Website view on selecting an item in ‘Launch Group’ dropdown 

 
Graphic 9: Website view on clicking the ‘Visualise Satellite Positions’ button 

 

 
8 



 
 

 
Graphic 10: Website view on clicking the down-arrow button in the first table column 

 

 
9 


