
Tranquility Programmer’s Manual

Introduction

The language Tranquility has been created as a language to teach the basic concepts of programming lan-
guages and programming technique. It has relatively few features to keep the learning curve short, and its
features are focused on reinforcing the core ideas of how programming languages work and how computers
run the programs expressed in them. It is important to understand that Tranquility has not been created
to make it easy to create production applications. It has been created to help you develop a deeper under-
standing of how the hardware, the programming language, and the code you write work together. The basic
usage model of the language is an unusual combination of the classic edit-compile-run development with
code execution in the web browser. Although created for the CS164 course at Drexel University, Tranquility
is a good language for anyone wanting to learn how the hardware and software fit together.

The name Tranquility has been chosen for several reasons:

1. Tranquility is a pun on the name of the BLISS programming language. BLISS is a systems program-
ming language that was used heavily at Digital Equipment Corporation (DEC). This connection
is highlighted in the name because Tranquility uses the same model of variables as does BLISS.

2. The summer during which Tranquility was developed (2019) was the same summer that saw the
50th anniversary of the Apollo 11 flight, and the landing site for that mission was the Sea of
Tranquility.

3. Although the word ‘tranquility’ does not appear in the classic song Bridge over Troubled Water, it
does seem an appropriate description of the sense of bridging across troubles. It would be natural
to ask what any of this has to do with a programming language. The answer is that much of the
motivation for creating this language was in bridging a large conceptual chasm between the world
of binary numbers, adders, and instructions on the one hand and the world of popular high-level
languages on the other. It is hoped that students using Tranquility will be able to approach other
languages with less of a sense of mystery and more of an understanding of what’s really going on.

Hello World

As has become traditional in the presentation of programming languages, we begin with a very simple
program to simply print a string to the output. In the course of examining and running this example, we
will get a feel for several aspects of the language and how to use it. We begin by creating a file containing
the source code for the program:

fun init() {

sprint("Hello World\n")

}

For the sake of discussion, let’s say we wrote this source code into a file called hello.t. There are two
things about this that are worth highlighting. First, the .t extension is not required by the language; it’s
just a convention that Tranquility source file names end that way. Second, remember the file is really just a
sequence of binary numbers with one 8-bit number (a byte) for each character in the file. The correspondence
of what numbers are used for what characters is defined by the ASCII character set.

Compiling Hello World

Before getting into the details of how the program is written, we’ll take a look at how we would run this
program. As with many languages, before we can run the program, we must compile the program. A compiler
translates a program from the representation that you see in your editor into another representation that
is more easily understood by the computer. In many cases, this target representation is the set of machine
language instructions directly understood by the CPU, much like the set of ten instructions available on the
CARDIAC. In the case of Tranquility, the compiler translates the source code into the machine language of
a different fictitious machine called the Tranquility Virtual Machine, or tvm. The command to compile this
Tranquility program is

tranqc hello.t

1

After you run that program, you will find that a new file named hello.json has been created in the current
directory. This file contains a representation of the tvm machine code for this program in a form suitable
for the program that simulates the tvm.

Running Hello World

Up to this point, using Tranquility is much like using many other languages. It departs from more conven-
tional languages in that the program that simulates the tvm runs in your web browser. As you might guess,
this requires that you have an HTML file that loads your program to be run. A very basic HTML file that
can be used for this purpose looks like:

<html>

<head>

<script src="hello.json"></script>

<script src="https://www.cs.drexel.edu/~bls96/tvm.js"></script>

</head>

<body>

</body>

</html>

This HTML file loads two other files, one being the file created by the Tranquility compiler and the
other being a JavaScript program that simulates the tvm. The file hello.json is expected to be in the same
directory as the HTML file and the file tvm.js file is in the professor’s web pages. To load it in the browser,
you need to have these files in your public html directory. If the HTML file is named hello.html, then
getting them there can be accomplished with the command

cp hello.json hello.html ~/public html/

If your user name is abc123 then you can load this page with the URL

http://cs.drexel.edu/~abc123/hello.html

When the page loads, this is what it looks like:

Pressing the button labeled Start begins running the code and results in a screen showing the message in
the standard output window.

2

Hello World Code

Returning to the source code for our program, the file begins with the keyword fun. In Tranquility, fun
introduces the declaration of a function. Functions are named sections of code that may take inputs and may
produce outputs. The next thing after the keyword fun is the name of the function being declared. In this
case, the function is called init. This is a special function name in Tranquility. The first function that is
run (called) in Tranquility is always the function init. After the name of a function in a declaration, there
must be a list of arguments in parentheses. If there are no arguments to the function, then the parentheses
will be empty. The remainder of a function declaration is the function body enclosed in braces.

Notice the placement of the braces. Some languages have strict rules for formatting, and some languages
allow very flexible formatting. Regardless of which approach a language takes, it is important for the
programmer to develop disciplined style in formatting. To reinforce the importance of such discipline,
Tranquility requires a fairly strict formatting. In Tranquility, the opening brace must always go on the line
that begins whatever is enclosed in the braces. Conversely, the closing brace must always go on a line by
itself. Although not required by the language, statements enclosed in braces should be indented.

In general, every function declaration will take the form:

fun name(args) {

where name is the name of the function being declared and args is a possibly empty list of parameter names.
In this function, there is only a single statement in the function body. That statement is

sprint("Hello World\n")

This statement is a function call. In other words, it causes the code for another function to be run. In this
case, the function is sprint, which is a built-in function in Tranquility. It prints a string of characters to
the standard output window of the browser. In this case, the string being printed is a literal string given in
double quotation marks. The string is an input to the function and is enclosed in parentheses following the
name of the function.

Another Example

To illustrate more features of Tranquility, let us consider another example.

fun sq(n) {

return .n * .n

}

fun init() {

var i

sprint("Table of squares:\n")

i : 1

loop {

until .i > 10

iprint(.i)

sprint(" squared equals ")

iprint(sq(.i))

nl()

i : .i + 1

3

}

}

This program has two functions, one called sq and the other called init. The simpler of the two is sq so
we’ll look at that one first. From the declaration of the function, we can see that sq takes a single argument
as input. Inside of sq, we call that argument n. For those coming with experience in other languages, it
may seem strange that there is no type information given in the argument list. More will be said on this
later, but in Tranquility, all variables and parameters are of a single type, the word. This characteristic of
the language was chosen to reinforce the understanding that internally, everything is a binary number. We
will see later, how that can be used for characters and strings of characters.

Function Returns

The body of sq contains only a single line that reads:

return .n * .n

This statement illustrates several features of the language. First, the keyword return indicates that we are
instructing the system to go back to the point from which this function was called. In Tranquility, a function
may return a value back to the caller. If a function is not returning a value, the return statement can
simply be that with nothing else after it. Here, the function does return a value and the return keyword
is followed by an expression. At the time the function returns, the expression is evaluated and the result of
the evaluation is the value that the caller gets from the function it called.

Variable Addresses and Values

In sq the expression is a multiplication as indicated by the * character. So the return value of this function
is a product of two values. That much is easy, almost obvious. How the two values to be multiplied are
specified requires a little more explanation. Remember that in programming, it’s better to think of a variable
as a name for a memory location, rather than a name for a value. In Tranquility, that’s exactly how variables
work. An expression that consists of just a variable name evaluates to be the address of the location named
by the variable. To look inside that memory location and get the value stored there, we have an operator
that’s denoted by the dot (.) character. So in Tranquility, the expression n evaluates to be the memory
address associated with the name n, and the expression .n evaluates to be the data stored in the memory
location named n. This is the characteristic of the language BLISS that is copied in Tranquility. To evaluate
the expression .n * .n, we look in the memory location identified by the name n and get the value out, then
we do that again, and finally we multiply the two values together. So the overall operation of the function
sq is to compute and return the square of the number that was passed into it.

The init function in the program is more involved than the other two functions that we’ve examined,
so we’ll take it one line at a time. The first line reads:

var i

This line creates a variable and gives it the name i. Because it appears inside a function, it is local to that
function. In other words, it cannot be seen outside the function, it comes into being when the function is
called, and it ceases to exist when the function returns. Of course, the memory location that the variable
name identifies actually exists throughout the program, but association with the variable name has a limited
life. In Tranquility, all variable declarations must appear before any executable code in a function.

The first statement of executable code in init is a call to the function sprint much as we saw in the
previous example. We don’t need to say any more about it or the other call to sprint later in the function.
It is followed by a very simple appearing statement:

i : 1

The experienced programmer will tend to read this as “set i to 1,” but it is worthwhile to look at it a little
more carefully. An assignment statement uses the : (:) to indicate an operation like the STO instruction on
the CARDIAC. This is very much like the use of the equals sign in other languages. It works by using two
numbers, one on the left and one on the right. In CARDIAC terms, the number on the right needs to be
loaded into the accumulator and then it’s stored into the memory location given by the number on the left.

4

So in this statement we take the value of 1 on the right and store it into the memory location identified by
the variable i.

Variables in Tranquility can also be declared globally. Any variables declared in the file before the first
function is declared will be visible to all code in the program. However, if a function parameter or local
variable has the same name as a global variable, then it will “hide” the global variable in that function.
References to that name inside the function will be resolved to the parameter or local variable, rather than
the global variable.

Repetition

The next statement, however, needs some discussion. It begins with the keyword loop and it contains other
statements within it. In Tranquility, any time statements appear inside other statements, they must be
enclosed in braces. Unlike some other languages, you may not omit the braces even when there is a single
statement in that grouping. This characteristic of Tranquility is much like that found in the language Go.
The meaning of the loop statement is that it identifies a sequence of statements that will be repeated. This
is essentially the same sort of thing we saw in CARDIAC code where we had a sequence of instructions and
there was a JMP instruction at the bottom of it to go back to the top. The statements in the body of the
loop statement are simply listed on consecutive lines. Where some languages use a semicolon to terminate a
statement, Tranquility uses the newline to terminate it. This means that all statements in Tranquility must
be on a single line. If you find that you have a line that is getting unreasonably long, then you need to break
it down into multiple statements.

In the body of the loop, the first statement is

until .i > 10

This is another unusual aspect of Tranquility when compared to most other languages. This statement
determines the condition on which we break out of the loop and go down to the code that follows the loop.
It can appear anywhere inside the loop. Many languages have looping structures that put a condition at
the beginning of the loop or at the end of the loop. When the condition is at the beginning, we call it a
pre-test loop and the loop is performed zero or more times. When the condition is at the bottom, we call it
a post-test loop and the loop is performed one or more times. In Tranquility, the same effect is achieved by
placing the until statement as either the first statement or the last statement in the loop body. However,
there are times when it’s most natural to have a part of the loop that’s done n times and another part of
the loop that’s done n− 1 times. In these cases, being able to put the until statement in the middle of the
loop is more flexible. It also more closely mirrors what you saw when working with the machine language
instructions in the CARDIAC. This particular use of until means that at the point where we get to this
statement and the memory location i has a value greater than 10, the loop stops and the program continues
with whatever follows the loop.

The next line of the loop body is a call to iprint which is like sprint except that it prints out a
representation of a number as a base-10 numeral. Make sure you understand here why this line is written
as iprint(.i) rather than iprint(i). The second call to iprint in this function:

iprint(sq(.i))

is more interesting. The value to be printed is given by the expression sq(.i) that’s in the argument list for
iprint. Such an expression looks the same as the calls to sprint and iprint that we’ve seen, and it really
is. In all of these cases, we first evaluate the arguments, then pass the argument values to the functions
jumping to their code, and then come back to where we left off when they finish. That’s the process of
calling a function. The difference in this case is that we expect the function we’re calling to return a value
to us as a result, and that value becomes the value of the expression which, in turn, gets passed to iprint

for printing. The nl() that follows prints a newline to finish the line that’s being printed.
At the end of the loop, we have the statement

i : .i + 1

Based on what has already been discussed, this statement fetches the value stored in the memory location
identified by the variable i, adds one to it, and stores the result into the memory location identified as i.

5

The effect is to increment i. Putting it all together, the program takes each integer value starting at 1 and
going up to and including 10, computes the square of that number and prints it out. Running the program
produces the output:

Table of squares:

1 squared equals 1

2 squared equals 4

3 squared equals 9

4 squared equals 16

5 squared equals 25

6 squared equals 36

7 squared equals 49

8 squared equals 64

9 squared equals 81

10 squared equals 100

More on Using tranqc

Of course, things don’t always go as smoothly as we’ve portrayed here. Programming is an error-prone
activity. However, some of the simplest types of errors are ones that the compiler can catch for us and help
us resolve. These are ones where the text we’ve given the compiler is not a valid program in that language.
This includes things like syntax errors and mistyped variable names. For example, suppose we meant to
declare a variable called b, but instead typed v (the next key over) in the declaration. Then in every place
we use b, the compiler won’t know what we’re talking about and we might get some error messages like this:

prog.t:6: unresolved symbol b

prog.t:7: unresolved symbol b

prog.t:13: unresolved symbol b

Each of these lines indicates an error that the compiler found. The first thing on the line is the name of
the file in which the error occurred. After that is the line number where the error was detected, and the
remainder of the line attempts to describe the error to help you correct it. Be careful about the line numbers,
however. In some cases, the error is actually detected when the compiler gets to a later line in the program
(usually the next line). So if the error message doesn’t seem to make sense on the line reported, scan upward
and see if there’s an earlier line for which the message makes sense.

The more difficult errors to deal with are the logical errors. These are ones where we’ve not designed
the logic of the program correctly, and the compiler can’t find them for us. There are many ways in which
such errors can arise, but most of the time they can be traced to either carelessness or a misunderstanding
on the part of the programmer. For cases where there’s a misunderstanding about the language and how
programs in the language are run, the Tranquility compiler can print out its internal representation of the
program and let you see how the compiler sees it. To do so, run the compiler with the -v option:

tranqc -v sq.t

Assuming that the example in the previous section is in the file sq.t, then the compiler will print out the
following:

Globals:

Functions:

0 sq na:1 nl:0: args: n local:

0x1(n:L) @ 0x1(n:L) @ * RETURN

1 init na:0 nl:1: args: local: i

"Table of squares:

"(S) -2(sprint) CALL POP

0x1(i:L) 1(I) !

6

[

0x1(i:L) @ 10(I) > BREAK

0x1(i:L) @ -1(iprint) CALL POP

" squared equals "(S) -2(sprint) CALL POP

0x1(i:L) @ 0(sq) CALL -1(iprint) CALL POP

-5(nl) CALL POP

0x1(i:L) 0x1(i:L) @ 1(I) + !

]GO

The notation here is a bit cryptic. It’s based on some ideas from the programming language Forth and is
connected with the details of the tvm discussed later. However, it provides a thorough and exact expression
of how the compiler has understood your program. Spending a little time understanding how your original
program got translated into this form will help you determine how well you’ve managed to express what you
intended to in the language.

Another option that is available to you is the -a. Compiling with the -a option directly creates the
HTML file in your public html directory and embeds the JSON tvm machine code into the HTML file.
This streamlines the development process at the expense of seeing how all the pieces fit together.

One other thing that is often helpful is to look at what the program is doing as it’s running. The starting
point in learning how to do that is to add iprint and sprint statements into the program to see if you’re
reaching the places in the code that you expect and if the variables are getting set to the values you expect.
In later courses and throughout your career, you will be exposed to languages and environments that will
have debuggers that you can use like a microscope to look at what’s going on. However, for now, it’s good
to learn how to work without them to give you a better sense of what they can and cannot do for you.

Yet Another Example

We will take a look at one more example in the tutorial portion of this manual. It illustrates several more
features and techniques that you will find useful.

fun fact(n) {

if .n == 0 {

return 1

}

else {

return .n * fact(.n - 1)

}

}

fun genfacts(n) {

var i, ftab

ftab : alloc(.n)

i : 0

loop {

until .i >= .n

(.ftab+.i) : fact(.i)

i : .i + 1

}

return .ftab

}

fun filltable() {

var i, ftab, istr

html("<center>\n")

7

html("<table border=1><tr><th>n</th><th>n!</th></tr>\n")

ftab : genfacts(13)

istr : alloc(12)

i : 0

loop {

until .i > 12

html("<tr><td>")

i2s(.istr, .i)

html(.istr)

html("</td><td>")

i2s(.istr, .(.ftab+.i))

html(.istr)

html("</td></tr>\n")

i : .i + 1

}

html("</table></center>\n")

}

fun init() {

html("<center>")

button("Make Table", filltable)

html("<p>Factorials<p>\n</center>\n")

}

Conditionals

We’ll start with the fact function at the top of the program. The main new feature here is the if statement.
It allows us to selectively perform some operations depending on some conditions. In this case, the statement
looks like:

if .n == 0 {

return 1

}

else {

return .n * fact(.n - 1)

}

Here, the statement means that if the number given to us as an argument is zero, then we return the value
one. Otherwise, we calculate a value that is the product of the number we got and the factorial of the next
smaller number. That product is what we return.

In if statements, the else part is optional. Furthermore, if you want to have sequence of tests and
perform only one of the actions, then you can write it like this:

if cond1 {

action1

}

else if cond2 {

action2

}

else if cond3 {

...

else {

unmatched action

}

8

Arrays

The genfacts function illustrates how arrays are done in Tranquility and how arrays work behind the scenes
in all languages. In reality, the language has no arrays, per se; the programmer constructs arrays from other
language features. An array is like a mini memory space that has a name. Each location in the array is
identified by a number, like the address in memory. In the case of an array, we call that number the index.
Internally, the array is a subest of memory starting at some base address. So to get to a particular element
of the array, we just have to add the base address to the index, giving us the address of the element.

Here the array is created by a call to the built-in function alloc which takes the number of memory
locations we want to allocate as an argument.

ftab : alloc(.n)

At this point, the memory location ftab contains the address of the first memory location we allocated. So
the expression ftab evaluates to the address of the memory location labeled ftab, and the expression .ftab

evaluates to the address of the first element in the array. We store the values of factorials into the array
with the statement:

(.ftab+.i) : fact(.i)

Remember that in an assignment the thing on the left is the address where we’re storing a value. So here,
we just add the base address we got back from alloc and the index to get that address. The parentheses
around the expression on the left aren’t strictly necessary. Later in the filltable function, we fetch the
value at a position in the array with the expression .(.ftab+.i), and here the parentheses are necessary,
because the dot operator has a higher precedence than the addition.

Connecting to HTML

Several of the statements in both filltable and init are calls to built-in functions that populate elements
on a web page. The first time one of these functions is called, a new tab/window is opened in the browser
for rendering the new HTML elements. This means that calls to iprint and sprint still go to the standard
output in the original window. The relevant statements in init in this example are

html("<center>")

button("Make Table", filltable)

html("<p>Factorials<p>\n</center>\n")

which uses two of the built-in functions, html and button. The html function just appends the argument
string to the newly created tab/window. In principle, you could create a button on the page using the html
function, but we need a way to specify what the button does. The approach we’ve chosen for Tranquility
is to have a separate button creating function where the first argument is the label on the button, and the
second argument is the Tranquility function to call when the button is pressed. Notice here, that we have
the name of the function without the parentheses after it. That’s because we’re not calling the function at
the time we’re creating the button. We’re just telling it what function to call when the time comes. After
pressing the button labeled “Make Table,” this is what appears in the HTML window:

9

Language Reference

This section is a terse description of the details of Tranquility.

Lexical Elements

Tranquility has the following seven reserved keywords: else, fun, if, loop, return, until, and var. These
reserved words cannot be used as identifiers for variable or function names. The remaining lexical elements
of the language include:

1. Character constants are enclosed in single quotes (’) and consist of a single character, or a special
character denoted by a backslash followed by a regular character, (e.g. ’\n’). The supported special
characters include \b, \n, \r, \t, and \\.

2. Integer constants are composed of one or more digits, optionally preceded by 0x. Constants that
begin with 0x are hexadecimal constants, and the letters a-f are allowed as digits. Constants
beginning with 0 (but not 0x) are taken to be octal. All other constants are interpreted as decimal.

3. Literal strings are enclosed in double quotes (") and contain zero or more characters including the
escaped special characters discussed in the character constants.

4. Identifiers consist of unquoted alphanumeric characters beginning with an alphabetic character.
Both upper and lower case alphabetic characters are allowed, and the underscore character () is
considered an alphabetic character.

5. Comments are denoted by a pound sign (#). The comment character through the end of the line
are ignored.

Syntax

The following is the syntax for Tranquility given in BNF notation:

<program> ::= <var-list> <fun-list>

<var-list> ::= ǫ | "var" <id-list> "\n" <var-list>

<id-list> ::= ID | ID "," <id-list>

<id-list-e> ::= ǫ | <id-list>

10

<fun-list> ::= <fun-decl> | <fun-decl> <fun-list>

<fun-decl> ::= "fun" ID "(" <id-list-e> ")" "{" "\n" <var-list> <stmt-list> "}" "\n"

<stmt-list> ::= ǫ | "\n" <stmt-list> | <stmt> <stmt-list>

<stmt> ::= <expr> ":" <expr> "\n" | <expr> "\n" | <if-stmt>

| "until" <expr> "\n" | "loop" "{" "\n" <stmt-list> "}" "\n"

| "return" "\n" | "return" <expr> "\n"

<if-stmt> ::= "if" <expr> "{" "\n" <stmt-list> "}" "\n"

| "if" <expr> "{" "\n" <stmt-list> "}" "\n" "else" "{" "\n" <stmt-list> "}" "\n"

| "if" <expr> "{" "\n" <stmt-list> "}" "\n" "else" <if-stmt>

<expr-list> ::= <expr> | <expr> "," <expr-list>

<expr-list-e> ::= ǫ | <expr-list>

<expr> ::= INTEGER | CHARACTER | STRING | ID | ID "(" <expr-list-e> ")"

| "(" <expr> ")" | "." <expr> | "-" <expr> | "~" <expr>

| <expr> "+" <expr> | <expr> "-" <expr> | <expr> "*" <expr>

| <expr> "/" <expr> | <expr> "%" <expr> | <expr> "&" <expr>

| <expr> "|" <expr> | <expr> "^" <expr> | <expr> "==" <expr>

| <expr> "!=" <expr> | <expr> "<" <expr> | <expr> "<=" <expr>

| <expr> ">" <expr> | <expr> ">=" <expr> | <expr> "<<" <expr>

| <expr> ">>" <expr>

Statements

There are relatively few statements in Tranquility. Here, we look at what each of them does.
• Assignment Statement: When executing the assignment statement, the expressions on both the
left and right side are evaluated. The value on right side of the assignment is stored into memory
at the address given by the value of the left-hand expression.

• Expression Statement: The expression statement only exists to allow for function calls where
the return value is ignored. Other expressions can appear as statements, but no other expressions
will have any effect.

• If Statement: The expression after the if keyword is evaluated first. If the result of the expression
is non-zero, then the statements in the true branch of the if statement are executed. Otherwise,
(the expression evaluates to zero), the statements in the false branch are executed.

• Loop Statement: The statements in the body of the loop statement are executed repeatedly.
• Until Statement: The expression in the until statement is evaluated. If the result is non-zero,
then control breaks out of the enclosing loop statement and continues with the statements following
that loop body.

• Return Statement: This statement immediately returns control away from the currently execut-
ing function back to the calling function. If an expression follows the return keyword, then it is
evaluated and the result becomes the function’s return value. Otherwise, the return value is zero.

Expressions

As with most languages, expressions in Tranquility are sequences of symbols that represent the computation
of values. The syntax given earlier shows that expressions are recursively built from atomic values and from
combining expressions with operators. The different types of expressions are summarized as follows:

• Any instance of an integer constant, character constant, or literal string is an expression. The value
of an integer constant expression is the numeric value represented by the sequence of digits in the
relevant base. The value of a character constant is the number defined in the ASCII character set
for that character. The value of a literal string is the memory address of the first character in the
string. Strings are terminated by a zero value.

11

• An identifier is an expression whose value is the memory address that identifier labels. The memory
spaces for functions and variables are separate, so programmers should not attempt to do arithmetic
on the addresses of functions.

• An identifier followed by a possibly empty list of expressions enclosed in parentheses is a function
call. Each of the argument expressions is evaluated and passed to the function named by the
identifier. The value of a call expression is the return value from the function called.

• Any expression may be enclosed in parentheses to override the natural precedences of the operators.
• The dot (.) operator performs a fetch. It, along with other unary operators, has the highest
precedence among operators. The value of a fetch expression is the contents of the memory location
whose address is given by the value of the expression following the operator.

• Tranquility supports the usual arithmetic operators with their conventional precedences. Addition
is denoted by +, subtraction by -, multiplication by *, division by / and remainder by %. A unary
- operator performs negation as usual.

• The usual comparison operators are also present in the language with == for equality, != for non-
equality, < for less-than, <= for less-than or equal to, > for greater-than, and >= for greater-than or
equal to. The value of a conditional expression is one if the condition tests true and zero if false.
Comparison operators have lower precedence than arithmetic operators, but higher precedence than
bitwise operators.

• The final class of expressions in Tranquility is the bitwise expression. Boolean AND is denoted by
&, OR by |, and XOR by ^. The unary operator for bitwise complement is ~. Bitwise Boolean
operators have the lowest precedence. There are also two bitwise shift operators: left shift (<<) and
right shift (>>). Their precedence is the highest among binary operators.

Built-In Functions

These are the built-in functions in Tranquility. They are listed in alphabetical order for easy reference and
include descriptions of each function and its argument use.

• alloc(n): This function allocates a block of memory with n locations and returns the address of
the first location.

• button(label, fun): Create a button on the HTML page with the label given by the first argu-
ment. When the button is pushed, the Tranquility function identified by the second argument is
called.

• buttonlabel(b, label): Set the label on the button identified by the first argument to the string
passed as the second argument.

• free(p): Returns the previously allocated memory block to the free list. The argument is the
memory address returned by the earlier call to alloc. (Currently unimplemented)

• html(s): Send the HTML code in the argument string to the HTML window for Tranquility.
• i2s(str, n): Produce a string that contains the decimal (base-10) representation of the integer
value passed as the second argument. The first argument should be the address of a block of
memory large enough to contain the string.

• iprint(n): Print the integer in decimal in the standard output window.
• iread(s): Bring up a pop-up dialog asking the user to enter an integer, using the argument string
as the message in the dialog. The numeric value of the entered integer is returned from the function.

• makeimg(): This function creates an image without source specified. Its return value can be used
to later specify the source of the image.

• makelabel(s): Create a label setting its contents to the string passed as an argument. It returns
an integer label identifier that can be used to change the text in the label.

• maketable(r,c,f): Create a table with r rows and c columns, returning an integer table identifier.
The function f is called each time the user clicks on a cell of the table. It is passed the row and
column as arugments.

• nl(): Print a newline to the standard output.
• random(n): Returns a random number in the range [0, n).
• setcell(t,r,c,s): Set the contents of the cell at row r and column c of table t to the string s.
The first argument should be a value returned from maketable.

12

• setcellcolor(t,r,c,color): Set the background color of the cell at row r and column c of table
t to the color named by the string color. The first argument should be a value returned from
maketable.

• setimg(n, src): Set the source property of an image. The return value from the earlier makeimg
call should be provided as the first argument. The second argument should be the string specifying
the image source.

• setlabel(n, s): Changes the text in the label identified by the first argument to the string
specified by the second argument.

• sprint(s): Print the string whose address is passed as the argument on the standard output.
• sread(s, p): Pop up a dialog prompting the user for a string as input, using the second argument
string as the message in the dialog. The string is copied into the memory starting at the address
passed as the first argument.

• stoptimer(n): Cancels a previously created timer that has not yet fired. The argument passed
should be the value returned from an earlier call to timer.

• timer(ms, fun): This function creates a timer that will fire ms milliseconds after it is created.
When it fires, it will call the function identified in the second argument. The function returns an
integer identifier that can be used to cancel the timer.

Under the Covers

The compiler for Tranquility is a fairly basic compiler using lex to generate the lexical analyzer and yacc

to generate the parser. The grammar used by yacc is the same as the syntax given in BNF earlier. Output
from the parser consists of a list of syntax trees, one for each function in the source program. After parsing,
the syntax trees are traversed twice. The first traversal resolves all identifier references. Global identifiers are
resolved in terms of their absolute memory addresses. Local variables and parameters are resolved as offsets
onto the stack. The second traversal over the syntax trees generates tvm code. The tvm is implemented in
JavaScript and is contained in the file tvm.js.

The Tranquility Virtual Machine

In the tvm, instructions and data live is separate memory spaces (much like what is often called a Harvard
architecture). A function “address” is actually an index into a list of functions. Data is stored in a 64Kword
array. Global data is allocated starting at address 0 and the stack grows down from the top of memory.

There are only two registers in the tvm, a stack pointer (sp) and a frame pointer (fp). All expression
evaluation takes place on the stack, obviating the need for general purpose registers. The frame pointer is
used as the base address for offset references to local variables and function parameters. No program counter
is present because instruction execution is handled through recursive evaluation of instruction lists, rather
than sequential instruction flow with jumps.

The tvm instruction set is as follows:

13

Opcode Instruction Description

1 PUSH Push the following value onto the stack
2 FETCH x = pop(); push(mem[x])

3 STORE v = pop(); a = pop(); mem[a] = v

4 IF x = pop(); If x 6= 0 evaluate the next list and skip the second;
otherwise skip the first list and evaluate the second

5 LOOP Repeatedly evaluate the following list of instructions
6 BREAK x = pop(); If x 6= 0 exit the enclosing loop list
7 RETURN Return from a called function
8 CALL Call the function identified in the following word
9 FPPLUS Add the fp to the value on the top of the stack

10 ADD y = pop(); x = pop(); push(x+y)

11 SUB y = pop(); x = pop(); push(x-y)

12 MUL y = pop(); x = pop(); push(x*y)

13 DIV y = pop(); x = pop(); push(x/y)

14 MOD y = pop(); x = pop(); push(x%y)

15 NOT x = pop(); push(~x)

16 AND y = pop(); x = pop(); push(x&y)

17 OR y = pop(); x = pop(); push(x|y)

18 XOR y = pop(); x = pop(); push(x^y)

19 EQ y = pop(); x = pop(); If x = y push(1), otherwise push(0)
20 NEQ y = pop(); x = pop(); If x 6= y push(1), otherwise push(0)
21 LT y = pop(); x = pop(); If x < y push(1), otherwise push(0)
22 LEQ y = pop(); x = pop(); If x ≤ y push(1), otherwise push(0)
23 GT y = pop(); x = pop(); If x > y push(1), otherwise push(0)
24 GEQ y = pop(); x = pop(); If x ≥ y push(1), otherwise push(0)
25 POP pop()

26 LSHIFT s = pop(); x = pop(); push(x << s);

27 RSHIFT s = pop(); x = pop(); push(x >> s);

Note that the IF instruction must be followed by two lists of instructions, and the LOOP instruction must
be followed by one list of instructions.

Calling Sequence

The following steps are performed when calling a function:
1. Each argument expression is evaluated and pushed onto the stack from right to left. This leaves

the first argument on the top of the stack.
2. Zero is pushed onto the stack n times, where n is the number of words of local storage necessary

in the function.
3. The frame pointer is pushed onto the stack.
4. The stack pointer value (prior to pushing fp) is copied to the frame pointer.
5. The instruction list for the function is evaluated.

Upon completing evaluation of the function list or execution of a RETURN instruction, the return value is
expected to be on top of the stack. The following sequence accomplishes the return:

1. The top of the stack is popped into r.
2. The frame pointer is copied into the stack pointer.
3. The top of the stack is copied into the frame pointer.
4. The stack pointer is incremented by the number of local variables and parameters for the function.
5. r is pushed onto the stack.

14

