Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Autonomous_Vehicles_with_embedded_intelligence
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
kpp55
Autonomous_Vehicles_with_embedded_intelligence
Commits
27d30933
Commit
27d30933
authored
6 years ago
by
kpp55
Browse files
Options
Downloads
Patches
Plain Diff
Added ros code
parent
4aca8a02
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Detect/detect.py
+35
-33
35 additions, 33 deletions
Detect/detect.py
with
35 additions
and
33 deletions
Detect/detect.py
+
35
−
33
View file @
27d30933
#!/usr/bin/python
#!/usr/bin/python
import
numpy
as
np
import
numpy
as
np
#
import rospy
import
rospy
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
import
cv2
import
cv2
from
imutils.video
import
WebcamVideoStream
width
=
275
from
imutils.video
import
FPS
from
std_msgs.msg
import
String
from
std_msgs.msg
import
Float64
pub
=
rospy
.
Publisher
(
'
direction
'
,
String
,
queue_size
=
10
)
pub1
=
rospy
.
Publisher
(
'
lane_distance
'
,
Float64
,
queue_size
=
10
)
rospy
.
init_node
(
'
lane_status
'
)
rate
=
rospy
.
Rate
(
10
)
# 100hz
width
=
325
# Converts picture to grayscale and applies filter to picture
# Converts picture to grayscale and applies filter to picture
# params
# params
# pic : a numpy array of pixel values to represent a picture
# pic : a numpy array of pixel values to represent a picture
...
@@ -41,7 +48,7 @@ def ROI(pic):
...
@@ -41,7 +48,7 @@ def ROI(pic):
roi
=
cv2
.
bitwise_and
(
pic
,
mask
)
roi
=
cv2
.
bitwise_and
(
pic
,
mask
)
return
roi
return
roi
# Define the region of in which the lanes will be in the cameras view
for the robot
# Define the region of in which the lanes will be in the cameras view
# params
# params
# pic: original image to apply the pre-set region of interest too
# pic: original image to apply the pre-set region of interest too
def
ROI_real
(
pic
):
def
ROI_real
(
pic
):
...
@@ -86,32 +93,24 @@ def find_middle(leftPoints, rightPoints):
...
@@ -86,32 +93,24 @@ def find_middle(leftPoints, rightPoints):
middle_lines
=
[[],[]]
middle_lines
=
[[],[]]
if
righ
tPoints
[
1
]
is
None
:
if
lef
tPoints
[
1
]
==
[]
:
print
(
"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Caught the empty
right
list~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"
)
print
(
"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Caught the empty list~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"
)
return
0
return
0
elif
leftPoints
[
1
]
is
None
:
print
(
"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Caught the empty left list~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"
)
elif
rightPoints
[
1
]
==
[]:
print
(
"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Caught the empty list~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"
)
return
0
return
0
else
:
else
:
#print(leftPoints[1])
#print(rightPoints[1])
for
x
in
range
(
150
):
for
x
in
range
(
150
):
#print("Right x point: " + str(rightPoints[0][x]))
#print("Left x point: " + str(leftPoints[0][x]))
#print("Right Y point: " + str(rightPoints[1][x]))
#print("Left Y point: " + str(leftPoints[1][x]))
midPoint
=
(
rightPoints
[
0
][
149
-
x
]
+
leftPoints
[
0
][
x
])
/
2
midPoint
=
(
rightPoints
[
0
][
149
-
x
]
+
leftPoints
[
0
][
x
])
/
2
#print("midPoint X: " + str(midPoint))
#print("midPoint Y: " + str(leftPoints[1][x]))
middle_lines
[
1
].
append
(
leftPoints
[
1
][
x
])
middle_lines
[
1
].
append
(
leftPoints
[
1
][
x
])
middle_lines
[
0
].
append
(
midPoint
)
middle_lines
[
0
].
append
(
midPoint
)
return
middle_lines
return
middle_lines
# Find the two average lines given the set of lines
# Find the two average lines given the set of lines
# params
# params
# pic: the original image
# pic: the original image
...
@@ -232,25 +231,25 @@ def detectDepartureNew(midPoints):
...
@@ -232,25 +231,25 @@ def detectDepartureNew(midPoints):
def
myround
(
x
):
def
myround
(
x
):
return
int
(
5
*
round
(
float
(
x
)
/
5
))
return
int
(
5
*
round
(
float
(
x
)
/
5
))
def
lane_status
(
lane_distance
):
rospy
.
loginfo
(
lane_distance
)
pub
.
publish
(
lane_distance
)
rate
.
sleep
()
#video = cv2.VideoCapture("test2.mp4")
video
=
cv2
.
VideoCapture
(
"
midTest.avi
"
)
#video = cv2.VideoCapture("highway.mp4")
#video = cv2.VideoCapture("highway.mp4")
#
video =
cv2.VideoCapture(0
)
video
=
WebcamVideoStream
(
src
=
1
).
start
(
)
plt
.
ion
()
plt
.
ion
()
while
True
:
while
not
rospy
.
is_shutdown
()
:
ret
,
frame
=
video
.
read
()
frame
=
video
.
read
()
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# frame = cv2.imread("../frame.jpeg")
# frame = cv2.imread("../frame.jpeg")
frame_edge
=
detect_edge
(
frame
)
frame_edge
=
detect_edge
(
frame
)
if
not
ret
:
video
=
cv2
.
VideoCapture
(
1
)
continue
new_img
=
formatImg
(
frame
)
new_img
=
formatImg
(
frame
)
...
@@ -276,22 +275,25 @@ while True:
...
@@ -276,22 +275,25 @@ while True:
plt
.
scatter
(
Rpoints
[
0
],
Rpoints
[
1
])
plt
.
scatter
(
Rpoints
[
0
],
Rpoints
[
1
])
plt
.
scatter
(
Lpoints
[
0
],
Lpoints
[
1
])
plt
.
scatter
(
Lpoints
[
0
],
Lpoints
[
1
])
if
(
Mpoints
!=
0
):
plt
.
scatter
(
Mpoints
[
0
],
Mpoints
[
1
])
plt
.
scatter
(
Mpoints
[
0
],
Mpoints
[
1
])
lane_distance
=
detectDepartureNew
(
Mpoints
)
lane_status
(
lane_distance
)
plt
.
scatter
(
300
,
400
)
else
:
print
(
"
No midpoint calculated
"
)
#plt.scatter(310, 300)
plt
.
imshow
(
frame
,
zorder
=
0
)
plt
.
imshow
(
frame
,
zorder
=
0
)
#detectDeparture(Lpoints, 310, Rpoints)
detectDepartureNew
(
Mpoints
)
plt
.
pause
(.
001
)
plt
.
pause
(.
001
)
lane
=
applyLines
(
frame
,
lines
)
#
lane = applyLines(frame, lines)
#cv2.imshow("edges", wEdges)
#cv2.imshow("edges", wEdges)
#
cv2.imshow("cropped", cropped)
cv2
.
imshow
(
"
cropped
"
,
cropped
)
#cv2.imshow("frame", lane)
#cv2.imshow("frame", lane)
key
=
cv2
.
waitKey
(
25
)
key
=
cv2
.
waitKey
(
25
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment