Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Autonomous_Vehicles_with_embedded_intelligence
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
kpp55
Autonomous_Vehicles_with_embedded_intelligence
Commits
c9a27b75
Commit
c9a27b75
authored
6 years ago
by
Leendert Hendricus Pruissen
Browse files
Options
Downloads
Patches
Plain Diff
Added center line
parent
e6ca9fe4
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Detect/detect.py
+64
-53
64 additions, 53 deletions
Detect/detect.py
with
64 additions
and
53 deletions
Detect/detect.py
+
64
−
53
View file @
c9a27b75
#
/
!usr/bin/python
#!
/
usr/bin/python
import
numpy
as
np
#import rospy
...
...
@@ -35,7 +35,7 @@ def detect_edge(pic):
# pic: original image to apply the pre-set region of interest too
def
ROI
(
pic
):
height
=
pic
.
shape
[
0
]
triangle
=
np
.
array
([[(
10
0
,
height
),
(
6
00
,
height
),
(
3
50
,
10
0
)]])
triangle
=
np
.
array
([[(
25
0
,
height
),
(
11
00
,
height
),
(
5
50
,
25
0
)]])
mask
=
np
.
zeros_like
(
pic
)
cv2
.
fillPoly
(
mask
,
triangle
,
255
)
roi
=
cv2
.
bitwise_and
(
pic
,
mask
)
...
...
@@ -46,7 +46,7 @@ def ROI(pic):
# pic: original image to apply the pre-set region of interest too
def
ROI_real
(
pic
):
height
=
pic
.
shape
[
0
]
triangle
=
np
.
array
([[(
0
,
height
),
(
620
,
height
),
(
430
,
25
0
),
(
15
0
,
250
)]]
)
triangle
=
np
.
array
([[(
0
,
height
),
(
145
,
300
),
(
475
,
30
0
),
(
60
0
,
height
)]],
dtype
=
np
.
int32
)
mask
=
np
.
zeros_like
(
pic
)
cv2
.
fillPoly
(
mask
,
triangle
,
255
)
roi
=
cv2
.
bitwise_and
(
pic
,
mask
)
...
...
@@ -56,7 +56,7 @@ def ROI_real(pic):
# params
# edge_pic: the image with the edge detection performed
def
getLines
(
edge_pic
):
return
cv2
.
HoughLinesP
(
edge_pic
,
1
,
np
.
pi
/
180
,
10
0
,
maxLineGap
=
80
,
minLineLength
=
2
0
)
return
cv2
.
HoughLinesP
(
edge_pic
,
1
,
np
.
pi
/
180
,
5
0
,
maxLineGap
=
80
,
minLineLength
=
1
0
)
# Apply the passed in lines the the original picture
# params
...
...
@@ -82,6 +82,35 @@ def applyLines(original_pic, lines):
return
original_pic
def
find_middle
(
leftPoints
,
rightPoints
):
middle_lines
=
[[],[]]
if
(
leftPoints
[
1
]
is
None
or
rightPoints
[
1
]
is
None
):
print
(
"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Caught the empty list~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"
)
return
0
else
:
print
(
leftPoints
[
1
])
print
(
rightPoints
[
1
])
for
x
in
range
(
150
):
#print("Right x point: " + str(rightPoints[0][x]))
#print("Left x point: " + str(leftPoints[0][x]))
#print("Right Y point: " + str(rightPoints[1][x]))
#print("Left Y point: " + str(leftPoints[1][x]))
midPoint
=
(
rightPoints
[
0
][
149
-
x
]
+
leftPoints
[
0
][
x
])
/
2
#print("midPoint X: " + str(midPoint))
#print("midPoint Y: " + str(leftPoints[1][x]))
middle_lines
[
1
].
append
(
leftPoints
[
1
][
x
])
middle_lines
[
0
].
append
(
midPoint
)
return
middle_lines
# Find the two average lines given the set of lines
# params
# pic: the original image
...
...
@@ -168,13 +197,13 @@ def find_average_lane(pic, lines):
for
line
in
lines
:
x1
,
y1
,
x2
,
y2
=
line
[
0
]
parameters
=
np
.
polyfit
((
x1
,
x2
),
(
y1
,
y2
),
1
)
print
(
"
Slope, intercept
"
)
print
(
parameters
)
#
print("Slope, intercept")
#
print(parameters)
slope
=
parameters
[
0
]
intercept
=
parameters
[
1
]
if
(
slope
<
0
):
print
(
"
Left insert
"
)
#
print("Left insert")
left_lines
.
append
((
slope
,
intercept
))
left_lines_points
[
0
].
append
(
x1
)
left_lines_points
[
0
].
append
(
x2
)
...
...
@@ -182,7 +211,7 @@ def find_average_lane(pic, lines):
left_lines_points
[
1
].
append
(
y2
)
else
:
print
(
"
Right insert
"
)
#
print("Right insert")
right_lines
.
append
((
slope
,
intercept
))
right_lines_points
[
0
].
append
(
x1
)
right_lines_points
[
0
].
append
(
x2
)
...
...
@@ -190,34 +219,34 @@ def find_average_lane(pic, lines):
right_lines_points
[
1
].
append
(
y2
)
if
not
left_lines
:
print
(
"
Left is empty
"
)
#
print("Left is empty")
left_line
=
[
0
,
0
,
0
,
0
]
else
:
left_average
=
np
.
average
(
left_lines
,
axis
=
0
)
left_line
=
make_coordinates
(
pic
,
left_average
)
print
(
"
Left Line:
"
)
print
(
left_line
)
#
print("Left Line: ")
#
print(left_line)
if
not
right_lines
:
print
(
"
Right is emtpy
"
)
#
print("Right is emtpy")
right_line
=
[
0
,
0
,
0
,
0
]
else
:
right_average
=
np
.
average
(
right_lines
,
axis
=
0
)
right_line
=
make_coordinates
(
pic
,
right_average
)
print
(
"
Right line :
"
)
print
(
right_line
)
#
print("Right line : ")
#
print(right_line)
print
(
"
Left fit
"
)
print
(
left_line
)
#
print("Left fit")
#
print(left_line)
print
(
"
\n
Right fit
"
)
print
(
right_line
)
#
print("\nRight fit")
#
print(right_line)
return
np
.
array
([
left_line
,
right_line
])
def
make_coordinates
(
image
,
line_parameters
):
print
(
line_parameters
)
#
print(line_parameters)
slope
,
intercept
=
line_parameters
y1
=
image
.
shape
[
0
]
y2
=
int
(
y1
*
(
1
/
2
))
...
...
@@ -257,27 +286,29 @@ def detectDeparture(left, car, right):
#
video = cv2.VideoCapture("test2.mp4")
video
=
cv2
.
VideoCapture
(
"
test2.mp4
"
)
#video = cv2.VideoCapture("highway.mp4")
video
=
cv2
.
VideoCapture
(
1
)
#
video = cv2.VideoCapture(1)
plt
.
ion
()
while
True
:
ret
,
frame
=
video
.
read
()
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# frame = cv2.imread("../frame.jpeg")
frame_edge
=
detect_edge
(
frame
)
if
not
ret
:
video
=
cv2
.
VideoCapture
(
0
)
video
=
cv2
.
VideoCapture
(
1
)
continue
new_img
=
formatImg
(
frame
)
wEdges
=
detect_edge
(
new_img
)
cropped
=
ROI_real
(
wEdges
)
#cropped = ROI_real(wEdges)
cropped
=
ROI
(
wEdges
)
lines
=
getLines
(
cropped
)
...
...
@@ -287,14 +318,18 @@ while True:
else
:
Rpoints
,
Lpoints
=
find_poly_lane
(
new_img
,
lines
)
Mpoints
=
find_middle
(
Lpoints
,
Rpoints
)
#(type(Rpoints[0][0]))
plt
.
cla
()
plt
.
clf
()
plt
.
scatter
(
Rpoints
[
0
],
Rpoints
[
1
])
plt
.
scatter
(
Lpoints
[
0
],
Lpoints
[
1
])
plt
.
scatter
(
Mpoints
[
0
],
Mpoints
[
1
])
plt
.
scatter
(
310
,
300
)
#
plt.scatter(310, 300)
plt
.
imshow
(
frame
,
zorder
=
0
)
...
...
@@ -305,9 +340,9 @@ while True:
lane
=
applyLines
(
frame
,
lines
)
cv2
.
imshow
(
"
edges
"
,
wEdges
)
cv2
.
imshow
(
"
cropped
"
,
cropped
)
cv2
.
imshow
(
"
frame
"
,
lane
)
#
cv2.imshow("edges", wEdges)
#
cv2.imshow("cropped", cropped)
#
cv2.imshow("frame", lane)
key
=
cv2
.
waitKey
(
25
)
if
key
==
27
:
...
...
@@ -315,27 +350,3 @@ while True:
video
.
release
()
cv2
.
destroyAllWindows
()
'''
# Load image
img = cv2.imread(
'
lol_image.jpg
'
)
new_img = formatImg(img)
wEdges = detect_edge(new_img)
cropped = ROI(wEdges)
lines = getLines(cropped)
#lanes = applyLines(img, lines)
average_lines = find_average_lane(img, lines)
average_lanes = applyLines(img, average_lines)
cv2.imshow(
"
edges
"
, wEdges)
#cv2.imshow(
"
with lines
"
, lanes)
cv2.imshow(
"
Average
"
, average_lanes)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment