Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dhac
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Noah Huppert
dhac
Commits
d1919040
Unverified
Commit
d1919040
authored
7 years ago
by
Noah Huppert
Browse files
Options
Downloads
Patches
Plain Diff
added week 7 grouping alg solution
parent
b81fb0f8
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
.ipynb_checkpoints/week7-checkpoint.ipynb
+157
-0
157 additions, 0 deletions
.ipynb_checkpoints/week7-checkpoint.ipynb
q2/wk7/week7.ipynb
+157
-0
157 additions, 0 deletions
q2/wk7/week7.ipynb
with
314 additions
and
0 deletions
.ipynb_checkpoints/week7-checkpoint.ipynb
0 → 100644
+
157
−
0
View file @
d1919040
{
"cells": [
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"testing\n",
"balance_group: 218393.51666666797\n"
]
}
],
"source": [
"import random\n",
"\n",
"# Helpers\n",
"def calc_deltas(t, ns):\n",
" deltas = []\n",
" \n",
" for n in ns:\n",
" deltas.append(t-n)\n",
" \n",
" return deltas\n",
"\n",
"def largest_index(ns):\n",
" largest = ns[0]\n",
" largest_i = 0\n",
" \n",
" for i in range(len(ns)):\n",
" n = ns[i]\n",
" if n > largest:\n",
" largest = n\n",
" largest_i = i\n",
"\n",
" return largest_i\n",
"\n",
"def sub_sum(ns):\n",
" sums = []\n",
" for n in ns:\n",
" sums.append(sum(n))\n",
" \n",
" return sums\n",
"\n",
"def sub_add(delta, ns):\n",
" new = []\n",
" for n in ns:\n",
" new.append(n+delta)\n",
" \n",
" return new\n",
"\n",
"def sub_abs(ns):\n",
" new = []\n",
" for n in ns:\n",
" new.append(abs(n))\n",
" \n",
" return new\n",
"\n",
"# Runners\n",
"def gen_nums(num_nums, num_groups):\n",
" num_min = 0\n",
" num_max = int(num_nums/(num_groups))\n",
"\n",
" nums = []\n",
" for i in range(num_nums):\n",
" nums.append(random.randint(num_min, num_max))\n",
" \n",
" return nums\n",
"\n",
"def run_alg(num_nums, num_groups, grouper):\n",
" nums = gen_nums(num_nums, num_groups)\n",
" groups = grouper(nums, num_groups)\n",
" \n",
" \n",
" group_sums = sub_sum(groups)\n",
" group_deltas = calc_deltas(target, group_sums)\n",
" group_deltas = sub_abs(group_deltas)\n",
" \n",
" return group_deltas\n",
"\n",
"def test_alg(num_nums, num_groups, grouper, iterations):\n",
" deltas = []\n",
" \n",
" for i in range(iterations):\n",
" deltas.extend(run_alg(num_nums, num_groups, grouper))\n",
" \n",
" delta = sum(deltas)\n",
" avg = delta / (iterations * num_groups)\n",
" \n",
" return avg\n",
"\n",
"# Algorithms\n",
"def balance_group(nums, num_groups):\n",
" # Initialize groups\n",
" groups = []\n",
" for i in range(num_groups):\n",
" groups.append([])\n",
"\n",
" # Target info\n",
" num_sums = sum(nums)\n",
" target = num_sums / num_groups\n",
"\n",
" # Group\n",
" nums.sort()\n",
"\n",
" for n in nums:\n",
" sums = sub_sum(groups)\n",
" #sums = sub_add(n, sums) # Might improve? Have to test\n",
" deltas = calc_deltas(target, sums)\n",
" largest_d = largest_index(deltas)\n",
"\n",
" groups[largest_d].append(n)\n",
" \n",
" return groups\n",
"\n",
"# Test\n",
"num_nums = 200\n",
"num_groups = 5\n",
"iterations = 100\n",
"\n",
"print(\"testing\")\n",
"print(\"balance_group: {}\".format(test_alg(num_nums, num_groups, balance_group, iterations)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:code id: tags:
```
python
import
random
# Helpers
def
calc_deltas
(
t
,
ns
):
deltas
=
[]
for
n
in
ns
:
deltas
.
append
(
t
-
n
)
return
deltas
def
largest_index
(
ns
):
largest
=
ns
[
0
]
largest_i
=
0
for
i
in
range
(
len
(
ns
)):
n
=
ns
[
i
]
if
n
>
largest
:
largest
=
n
largest_i
=
i
return
largest_i
def
sub_sum
(
ns
):
sums
=
[]
for
n
in
ns
:
sums
.
append
(
sum
(
n
))
return
sums
def
sub_add
(
delta
,
ns
):
new
=
[]
for
n
in
ns
:
new
.
append
(
n
+
delta
)
return
new
def
sub_abs
(
ns
):
new
=
[]
for
n
in
ns
:
new
.
append
(
abs
(
n
))
return
new
# Runners
def
gen_nums
(
num_nums
,
num_groups
):
num_min
=
0
num_max
=
int
(
num_nums
/
(
num_groups
))
nums
=
[]
for
i
in
range
(
num_nums
):
nums
.
append
(
random
.
randint
(
num_min
,
num_max
))
return
nums
def
run_alg
(
num_nums
,
num_groups
,
grouper
):
nums
=
gen_nums
(
num_nums
,
num_groups
)
groups
=
grouper
(
nums
,
num_groups
)
group_sums
=
sub_sum
(
groups
)
group_deltas
=
calc_deltas
(
target
,
group_sums
)
group_deltas
=
sub_abs
(
group_deltas
)
return
group_deltas
def
test_alg
(
num_nums
,
num_groups
,
grouper
,
iterations
):
deltas
=
[]
for
i
in
range
(
iterations
):
deltas
.
extend
(
run_alg
(
num_nums
,
num_groups
,
grouper
))
delta
=
sum
(
deltas
)
avg
=
delta
/
(
iterations
*
num_groups
)
return
avg
# Algorithms
def
balance_group
(
nums
,
num_groups
):
# Initialize groups
groups
=
[]
for
i
in
range
(
num_groups
):
groups
.
append
([])
# Target info
num_sums
=
sum
(
nums
)
target
=
num_sums
/
num_groups
# Group
nums
.
sort
()
for
n
in
nums
:
sums
=
sub_sum
(
groups
)
#sums = sub_add(n, sums) # Might improve? Have to test
deltas
=
calc_deltas
(
target
,
sums
)
largest_d
=
largest_index
(
deltas
)
groups
[
largest_d
].
append
(
n
)
return
groups
# Test
num_nums
=
200
num_groups
=
5
iterations
=
100
print
(
"
testing
"
)
print
(
"
balance_group: {}
"
.
format
(
test_alg
(
num_nums
,
num_groups
,
balance_group
,
iterations
)))
```
%% Output
testing
balance_group: 218393.51666666797
%% Cell type:code id: tags:
```
python
```
This diff is collapsed.
Click to expand it.
q2/wk7/week7.ipynb
0 → 100644
+
157
−
0
View file @
d1919040
{
"cells": [
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"testing\n",
"balance_group: 218393.51666666797\n"
]
}
],
"source": [
"import random\n",
"\n",
"# Helpers\n",
"def calc_deltas(t, ns):\n",
" deltas = []\n",
" \n",
" for n in ns:\n",
" deltas.append(t-n)\n",
" \n",
" return deltas\n",
"\n",
"def largest_index(ns):\n",
" largest = ns[0]\n",
" largest_i = 0\n",
" \n",
" for i in range(len(ns)):\n",
" n = ns[i]\n",
" if n > largest:\n",
" largest = n\n",
" largest_i = i\n",
"\n",
" return largest_i\n",
"\n",
"def sub_sum(ns):\n",
" sums = []\n",
" for n in ns:\n",
" sums.append(sum(n))\n",
" \n",
" return sums\n",
"\n",
"def sub_add(delta, ns):\n",
" new = []\n",
" for n in ns:\n",
" new.append(n+delta)\n",
" \n",
" return new\n",
"\n",
"def sub_abs(ns):\n",
" new = []\n",
" for n in ns:\n",
" new.append(abs(n))\n",
" \n",
" return new\n",
"\n",
"# Runners\n",
"def gen_nums(num_nums, num_groups):\n",
" num_min = 0\n",
" num_max = int(num_nums/(num_groups))\n",
"\n",
" nums = []\n",
" for i in range(num_nums):\n",
" nums.append(random.randint(num_min, num_max))\n",
" \n",
" return nums\n",
"\n",
"def run_alg(num_nums, num_groups, grouper):\n",
" nums = gen_nums(num_nums, num_groups)\n",
" groups = grouper(nums, num_groups)\n",
" \n",
" \n",
" group_sums = sub_sum(groups)\n",
" group_deltas = calc_deltas(target, group_sums)\n",
" group_deltas = sub_abs(group_deltas)\n",
" \n",
" return group_deltas\n",
"\n",
"def test_alg(num_nums, num_groups, grouper, iterations):\n",
" deltas = []\n",
" \n",
" for i in range(iterations):\n",
" deltas.extend(run_alg(num_nums, num_groups, grouper))\n",
" \n",
" delta = sum(deltas)\n",
" avg = delta / (iterations * num_groups)\n",
" \n",
" return avg\n",
"\n",
"# Algorithms\n",
"def balance_group(nums, num_groups):\n",
" # Initialize groups\n",
" groups = []\n",
" for i in range(num_groups):\n",
" groups.append([])\n",
"\n",
" # Target info\n",
" num_sums = sum(nums)\n",
" target = num_sums / num_groups\n",
"\n",
" # Group\n",
" nums.sort()\n",
"\n",
" for n in nums:\n",
" sums = sub_sum(groups)\n",
" #sums = sub_add(n, sums) # Might improve? Have to test\n",
" deltas = calc_deltas(target, sums)\n",
" largest_d = largest_index(deltas)\n",
"\n",
" groups[largest_d].append(n)\n",
" \n",
" return groups\n",
"\n",
"# Test\n",
"num_nums = 200\n",
"num_groups = 5\n",
"iterations = 100\n",
"\n",
"print(\"testing\")\n",
"print(\"balance_group: {}\".format(test_alg(num_nums, num_groups, balance_group, iterations)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:code id: tags:
```
python
import
random
# Helpers
def
calc_deltas
(
t
,
ns
):
deltas
=
[]
for
n
in
ns
:
deltas
.
append
(
t
-
n
)
return
deltas
def
largest_index
(
ns
):
largest
=
ns
[
0
]
largest_i
=
0
for
i
in
range
(
len
(
ns
)):
n
=
ns
[
i
]
if
n
>
largest
:
largest
=
n
largest_i
=
i
return
largest_i
def
sub_sum
(
ns
):
sums
=
[]
for
n
in
ns
:
sums
.
append
(
sum
(
n
))
return
sums
def
sub_add
(
delta
,
ns
):
new
=
[]
for
n
in
ns
:
new
.
append
(
n
+
delta
)
return
new
def
sub_abs
(
ns
):
new
=
[]
for
n
in
ns
:
new
.
append
(
abs
(
n
))
return
new
# Runners
def
gen_nums
(
num_nums
,
num_groups
):
num_min
=
0
num_max
=
int
(
num_nums
/
(
num_groups
))
nums
=
[]
for
i
in
range
(
num_nums
):
nums
.
append
(
random
.
randint
(
num_min
,
num_max
))
return
nums
def
run_alg
(
num_nums
,
num_groups
,
grouper
):
nums
=
gen_nums
(
num_nums
,
num_groups
)
groups
=
grouper
(
nums
,
num_groups
)
group_sums
=
sub_sum
(
groups
)
group_deltas
=
calc_deltas
(
target
,
group_sums
)
group_deltas
=
sub_abs
(
group_deltas
)
return
group_deltas
def
test_alg
(
num_nums
,
num_groups
,
grouper
,
iterations
):
deltas
=
[]
for
i
in
range
(
iterations
):
deltas
.
extend
(
run_alg
(
num_nums
,
num_groups
,
grouper
))
delta
=
sum
(
deltas
)
avg
=
delta
/
(
iterations
*
num_groups
)
return
avg
# Algorithms
def
balance_group
(
nums
,
num_groups
):
# Initialize groups
groups
=
[]
for
i
in
range
(
num_groups
):
groups
.
append
([])
# Target info
num_sums
=
sum
(
nums
)
target
=
num_sums
/
num_groups
# Group
nums
.
sort
()
for
n
in
nums
:
sums
=
sub_sum
(
groups
)
#sums = sub_add(n, sums) # Might improve? Have to test
deltas
=
calc_deltas
(
target
,
sums
)
largest_d
=
largest_index
(
deltas
)
groups
[
largest_d
].
append
(
n
)
return
groups
# Test
num_nums
=
200
num_groups
=
5
iterations
=
100
print
(
"
testing
"
)
print
(
"
balance_group: {}
"
.
format
(
test_alg
(
num_nums
,
num_groups
,
balance_group
,
iterations
)))
```
%% Output
testing
balance_group: 218393.51666666797
%% Cell type:code id: tags:
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment