Skip to content
Snippets Groups Projects
Select Git revision
  • f8e9be04dff8555e8669c978dba41274fd2298c0
  • main default
  • logRegressionVisuals
  • Dashboard
  • explainerAnnotation
  • DT-Class-Design
  • WIP-4-ModelCreation-class
  • Data_Ingestion_Class_Creation
  • 3-dummy-issue
  • 5-feature
10 results

loader.py

Blame
  • callbacks.py 1.63 KiB
    import numpy as np
    import math
    
    from utils.data_processing.synthetic import synthetic_dataset
    
    from bokeh.io import curdoc, show, output_notebook
    from bokeh.layouts import column, row
    from bokeh.models import ColumnDataSource, Select, Slider, Plot, Scatter
    from bokeh.palettes import Spectral6
    from bokeh.plotting import figure
    
    spectral = np.hstack([Spectral6] * 20)
    n_clusters_p_class = 1
    
    def update_samples_or_dataset(attrname, 
                                  old, 
                                  new, 
                                #   dataset_select,
                                #   samples_slider,
                                #   classes_slider,
                                #   features_slider,
                                #   inf_slider,
                                #   source
                                  ):
        global x, y
    
        dataset = dataset_select.value
        n_samples = int(samples_slider.value)
        n_classes = int(classes_slider.value)
        n_features = int(features_slider.value)
        n_inf = int(inf_slider.value)
    
        if n_inf > n_features:
            n_features = n_inf
            features_slider.update(value=n_inf)
        
        if n_classes * n_clusters_p_class > 2**n_inf:
            
            # n_inf = math.floor(math.sqrt(n_classes*n_clusters_p_class)) + n_classes % 2
    
            n_inf = (math.ceil(math.log2(n_classes)))
            n_features = n_inf
            # print("this is v", n_inf)
            
            inf_slider.update(value=n_inf)
            features_slider.update(value=n_features)
    
        x, y = synthetic_dataset(dataset, n_samples, n_inf, n_features, n_classes)
        colors = [spectral[i] for i in y]
    
        source.data = dict(colors=colors, x=x[:, 0], y=x[:, 1])