Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sparse_coding_torch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Teachable AI Lab
sparse_coding_torch
Commits
092b5e42
Commit
092b5e42
authored
3 years ago
by
hannandarryl
Browse files
Options
Downloads
Patches
Plain Diff
added updates to keras model to run in 2d and 3d
parent
3d931dab
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
keras/keras_model.py
+88
-33
88 additions, 33 deletions
keras/keras_model.py
keras/train_sparse_model.py
+41
-30
41 additions, 30 deletions
keras/train_sparse_model.py
with
129 additions
and
63 deletions
keras/keras_model.py
+
88
−
33
View file @
092b5e42
...
...
@@ -23,7 +23,7 @@ def do_recon(filters_1, filters_2, filters_3, filters_4, filters_5, activations,
@tf.function
def
do_recon_3d
(
filters
,
activations
,
batch_size
,
stride
):
recon
=
tf
.
nn
.
conv3d_transpose
(
activations
,
filters
,
output_shape
=
(
batch_size
,
5
,
100
,
200
,
1
),
strides
=
stride
)
recon
=
tf
.
nn
.
conv3d_transpose
(
activations
,
filters
,
output_shape
=
(
batch_size
,
5
,
100
,
200
,
1
),
strides
=
[
1
,
stride
,
stride
]
)
return
recon
...
...
@@ -41,7 +41,7 @@ def conv_error(filters_1, filters_2, filters_3, filters_4, filters_5, e, stride)
@tf.function
def
conv_error_3d
(
filters
,
e
,
stride
):
g
=
tf
.
nn
.
conv3d
(
e
,
filters
,
strides
=
[
stride
,
stride
,
stride
,
stride
,
stride
],
padding
=
'
SAME
'
)
g
=
tf
.
nn
.
conv3d
(
e
,
filters
,
strides
=
[
1
,
1
,
stride
,
stride
,
1
],
padding
=
'
SAME
'
)
return
g
...
...
@@ -54,8 +54,17 @@ def normalize_weights(filters, out_channels):
return
adjusted
@tf.function
def
normalize_weights_3d
(
filters
,
out_channels
):
norms
=
tf
.
norm
(
tf
.
reshape
(
filters
[
0
],
(
out_channels
,
-
1
)),
axis
=
1
)
norms
=
tf
.
broadcast_to
(
tf
.
math
.
maximum
(
norms
,
1e-12
*
tf
.
ones_like
(
norms
)),
filters
[
0
].
shape
)
adjusted
=
[
f
/
norms
for
f
in
filters
]
return
adjusted
class
SparseCode
(
keras
.
layers
.
Layer
):
def
__init__
(
self
,
pytorch_checkpoint
,
batch_size
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
lam
,
activation_lr
,
max_activation_iter
):
def
__init__
(
self
,
batch_size
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
lam
,
activation_lr
,
max_activation_iter
,
run_2d
):
super
(
SparseCode
,
self
).
__init__
()
self
.
out_channels
=
out_channels
...
...
@@ -65,31 +74,24 @@ class SparseCode(keras.layers.Layer):
self
.
activation_lr
=
activation_lr
self
.
max_activation_iter
=
max_activation_iter
self
.
batch_size
=
batch_size
# pytorch_checkpoint = torch.load(pytorch_checkpoint, map_location='cpu')
# weight_tensor = pytorch_checkpoint['model_state_dict']['filters'].swapaxes(1,3).swapaxes(2,4).swapaxes(0,4)
# self.filter = tf.Variable(initial_value=weight_tensor.numpy(), dtype='float32')
# weight_list = torch.chunk(weight_tensor, 5, dim=2)
#
initializer
=
tf
.
keras
.
initializers
.
HeNormal
()
self
.
filters_1
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_2
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_3
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_4
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_5
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
weights
=
normalize_weights
(
self
.
get_weights
(),
out_channels
)
self
.
set_weights
(
weights
)
self
.
run_2d
=
run_2d
@tf.function
def
do_update
(
self
,
images
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
):
def
do_update
(
self
,
images
,
filters
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
):
activations
=
tf
.
nn
.
relu
(
u
-
self
.
lam
)
recon
=
do_recon
(
self
.
filters_1
,
self
.
filters_2
,
self
.
filters_3
,
self
.
filters_4
,
self
.
filters_5
,
activations
,
self
.
batch_size
,
self
.
stride
)
if
self
.
run_2d
:
recon
=
do_recon
(
filters
[
0
],
filters
[
1
],
filters
[
2
],
filters
[
3
],
filters
[
4
],
activations
,
self
.
batch_size
,
self
.
stride
)
else
:
recon
=
do_recon_3d
(
filters
,
activations
,
self
.
batch_size
,
self
.
stride
)
e
=
images
-
recon
g
=
-
1
*
u
convd_error
=
conv_error
(
self
.
filters_1
,
self
.
filters_2
,
self
.
filters_3
,
self
.
filters_4
,
self
.
filters_5
,
e
,
self
.
stride
)
if
self
.
run_2d
:
convd_error
=
conv_error
(
filters
[
0
],
filters
[
1
],
filters
[
2
],
filters
[
3
],
filters
[
4
],
e
,
self
.
stride
)
else
:
convd_error
=
conv_error_3d
(
filters
,
e
,
self
.
stride
)
g
=
g
+
convd_error
...
...
@@ -103,29 +105,82 @@ class SparseCode(keras.layers.Layer):
du
=
self
.
activation_lr
*
mh
/
(
tf
.
math
.
sqrt
(
vh
)
+
eps
)
u
+=
du
# i += 1
# return images, u, m, v, b1, b2, eps, i
return
u
,
m
,
v
@tf.function
def
call
(
self
,
images
):
def
call
(
self
,
images
,
filters
):
if
self
.
run_2d
:
u
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
m
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
v
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
else
:
u
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
5
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
m
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
5
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
v
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
5
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
tf
.
print
(
'
activations before:
'
,
tf
.
reduce_sum
(
u
))
#
tf.print('activations before:', tf.reduce_sum(u))
b1
=
0.9
b2
=
0.999
eps
=
1e-8
b1
=
tf
.
constant
(
0.9
,
dtype
=
'
float32
'
)
b2
=
tf
.
constant
(
0.999
,
dtype
=
'
float32
'
)
eps
=
tf
.
constant
(
1e-8
,
dtype
=
'
float32
'
)
# i = tf.constant(0, dtype='float32')
# c = lambda images, u, m, v, b1, b2, eps, i: tf.less(i, self.max_activation_iter)
# images, u, m, v, b1, b2, eps, i = tf.while_loop(c, self.do_update, [images, u, m, v, b1, b2, eps, i])
for
i
in
range
(
self
.
max_activation_iter
):
u
,
m
,
v
=
self
.
do_update
(
images
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
)
u
,
m
,
v
=
self
.
do_update
(
images
,
filters
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
)
u
=
tf
.
nn
.
relu
(
u
-
self
.
lam
)
tf
.
print
(
'
activations after:
'
,
tf
.
reduce_sum
(
u
))
#
tf.print('activations after:', tf.reduce_sum(u))
return
u
class
SparseCodeConv
(
keras
.
Model
):
def
__init__
(
self
,
batch_size
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
lam
,
activation_lr
,
max_activation_iter
,
run_2d
):
super
().
__init__
()
self
.
sparse_code
=
SparseCode
(
batch_size
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
lam
,
activation_lr
,
max_activation_iter
,
run_2d
)
self
.
out_channels
=
out_channels
self
.
in_channels
=
in_channels
self
.
stride
=
stride
self
.
lam
=
lam
self
.
activation_lr
=
activation_lr
self
.
max_activation_iter
=
max_activation_iter
self
.
batch_size
=
batch_size
self
.
run_2d
=
run_2d
initializer
=
tf
.
keras
.
initializers
.
HeNormal
()
if
run_2d
:
self
.
filters_1
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_2
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_3
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_4
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_5
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
else
:
self
.
filters
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
5
,
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
if
run_2d
:
weights
=
normalize_weights
(
self
.
get_weights
(),
out_channels
)
else
:
weights
=
normalize_weights_3d
(
self
.
get_weights
(),
out_channels
)
self
.
set_weights
(
weights
)
@tf.function
def
call
(
self
,
images
):
if
self
.
run_2d
:
activations
=
self
.
sparse_code
(
images
,
[
tf
.
stop_gradient
(
self
.
filters_1
),
tf
.
stop_gradient
(
self
.
filters_2
),
tf
.
stop_gradient
(
self
.
filters_3
),
tf
.
stop_gradient
(
self
.
filters_4
),
tf
.
stop_gradient
(
self
.
filters_5
)])
recon
=
do_recon
(
self
.
filters_1
,
self
.
filters_2
,
self
.
filters_3
,
self
.
filters_4
,
self
.
filters_5
,
activations
,
self
.
batch_size
,
self
.
stride
)
else
:
activations
=
self
.
sparse_code
(
images
,
tf
.
stop_gradient
(
self
.
filters
))
recon
=
do_recon_3d
(
self
.
filters
,
activations
,
self
.
batch_size
,
self
.
stride
)
return
recon
,
activations
class
Classifier
(
keras
.
layers
.
Layer
):
def
__init__
(
self
):
super
(
Classifier
,
self
).
__init__
()
...
...
This diff is collapsed.
Click to expand it.
keras/train_sparse_model.py
+
41
−
30
View file @
092b5e42
...
...
@@ -10,7 +10,7 @@ import os
from
sparse_coding_torch.load_data
import
load_yolo_clips
import
tensorflow.keras
as
keras
import
tensorflow
as
tf
from
keras_model
import
SparseCode
,
do_recon
,
normalize_weights
from
keras_model
import
normalize_weights_3d
,
normalize_weights
,
SparseCodeConv
def
plot_video
(
video
):
...
...
@@ -55,11 +55,11 @@ def plot_original_vs_recon(original, reconstruction, idx=0):
def
plot_filters
(
filters
):
num_filters
=
filters
.
shape
[
0
]
num_filters
=
filters
.
shape
[
4
]
ncol
=
3
# ncol = int(np.sqrt(num_filters))
# nrow = int(np.sqrt(num_filters))
T
=
filters
.
shape
[
2
]
T
=
filters
.
shape
[
0
]
if
num_filters
//
ncol
==
num_filters
/
ncol
:
nrow
=
num_filters
//
ncol
...
...
@@ -74,7 +74,7 @@ def plot_filters(filters):
for
i
in
range
(
num_filters
):
r
=
i
//
ncol
c
=
i
%
ncol
ims
[(
r
,
c
)]
=
axes
[
r
,
c
].
imshow
(
filters
[
i
,
0
,
0
,
:,
:],
ims
[(
r
,
c
)]
=
axes
[
r
,
c
].
imshow
(
filters
[
0
,
:,
:
,
0
,
i
],
cmap
=
cm
.
Greys_r
)
def
update
(
i
):
...
...
@@ -82,29 +82,30 @@ def plot_filters(filters):
for
i
in
range
(
num_filters
):
r
=
i
//
ncol
c
=
i
%
ncol
ims
[(
r
,
c
)].
set_data
(
filters
[
i
,
0
,
t
,
:,
:])
ims
[(
r
,
c
)].
set_data
(
filters
[
t
,
:,
:
,
0
,
i
])
return
FuncAnimation
(
plt
.
gcf
(),
update
,
interval
=
1000
/
20
)
def
sparse_loss
(
filters_1
,
filters_2
,
filters_3
,
filters_4
,
filters_5
,
images
,
activations
,
batch_size
,
lam
,
stride
):
recon
=
do_recon
(
filters_1
,
filters_2
,
filters_3
,
filters_4
,
filters_5
,
activations
,
batch_size
,
stride
)
def
sparse_loss
(
recon
,
activations
,
batch_size
,
lam
,
stride
):
loss
=
0.5
*
(
1
/
batch_size
)
*
tf
.
math
.
reduce_sum
(
tf
.
math
.
pow
(
images
-
recon
,
2
))
loss
+=
lam
*
tf
.
reduce_mean
(
tf
.
math
.
reduce_sum
(
tf
.
math
.
abs
(
tf
.
reshape
(
activations
,
(
batch_size
,
-
1
))),
axis
=
1
))
return
loss
if
__name__
==
"
__main__
"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'
--batch_size
'
,
default
=
8
,
type
=
int
)
parser
.
add_argument
(
'
--batch_size
'
,
default
=
6
,
type
=
int
)
parser
.
add_argument
(
'
--kernel_size
'
,
default
=
15
,
type
=
int
)
parser
.
add_argument
(
'
--num_kernels
'
,
default
=
64
,
type
=
int
)
parser
.
add_argument
(
'
--stride
'
,
default
=
2
,
type
=
int
)
parser
.
add_argument
(
'
--max_activation_iter
'
,
default
=
1
50
,
type
=
int
)
parser
.
add_argument
(
'
--max_activation_iter
'
,
default
=
50
,
type
=
int
)
parser
.
add_argument
(
'
--activation_lr
'
,
default
=
1e-2
,
type
=
float
)
parser
.
add_argument
(
'
--lr
'
,
default
=
1e-
5
,
type
=
float
)
parser
.
add_argument
(
'
--lr
'
,
default
=
1e-
2
,
type
=
float
)
parser
.
add_argument
(
'
--epochs
'
,
default
=
100
,
type
=
int
)
parser
.
add_argument
(
'
--lam
'
,
default
=
0.05
,
type
=
float
)
parser
.
add_argument
(
'
--output_dir
'
,
default
=
'
./output
'
,
type
=
str
)
parser
.
add_argument
(
'
--seed
'
,
default
=
42
,
type
=
int
)
parser
.
add_argument
(
'
--run_2d
'
,
action
=
'
store_true
'
)
parser
.
add_argument
(
'
--save_filters
'
,
action
=
'
store_true
'
)
args
=
parser
.
parse_args
()
...
...
@@ -122,14 +123,24 @@ if __name__ == "__main__":
example_data
=
next
(
iter
(
train_loader
))
if
args
.
run_2d
:
inputs
=
keras
.
Input
(
shape
=
(
100
,
200
,
5
))
else
:
inputs
=
keras
.
Input
(
shape
=
(
5
,
100
,
200
,
1
))
output
=
SparseCode
(
'
../sparse.pt
'
,
batch_size
=
args
.
batch_size
,
in_channels
=
1
,
out_channels
=
args
.
num_kernels
,
kernel_size
=
args
.
kernel_size
,
stride
=
args
.
stride
,
lam
=
args
.
lam
,
activation_lr
=
args
.
activation_lr
,
max_activation_iter
=
args
.
max_activation_iter
)(
inputs
)
output
=
SparseCode
Conv
(
batch_size
=
args
.
batch_size
,
in_channels
=
1
,
out_channels
=
args
.
num_kernels
,
kernel_size
=
args
.
kernel_size
,
stride
=
args
.
stride
,
lam
=
args
.
lam
,
activation_lr
=
args
.
activation_lr
,
max_activation_iter
=
args
.
max_activation_iter
,
run_2d
=
args
.
run_2d
)(
inputs
)
model
=
keras
.
Model
(
inputs
=
inputs
,
outputs
=
output
)
if
args
.
save_filters
:
if
args
.
run_2d
:
filters
=
plot_filters
(
tf
.
stack
(
model
.
get_weights
(),
axis
=
0
))
else
:
filters
=
plot_filters
(
model
.
get_weights
()[
0
])
filters
.
save
(
os
.
path
.
join
(
args
.
output_dir
,
'
filters_start.mp4
'
))
learning_rate
=
args
.
lr
filter_optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
learning_rate
)
filter_optimizer
=
tf
.
keras
.
optimizers
.
SGD
(
learning_rate
=
learning_rate
)
loss_log
=
[]
best_so_far
=
float
(
'
inf
'
)
...
...
@@ -139,39 +150,39 @@ if __name__ == "__main__":
epoch_start
=
time
.
perf_counter
()
for
labels
,
local_batch
,
vid_f
in
tqdm
(
train_loader
):
tf
.
print
(
vid_f
)
if
local_batch
.
size
(
0
)
!=
args
.
batch_size
:
continue
if
args
.
run_2d
:
images
=
local_batch
.
squeeze
(
1
).
permute
(
0
,
2
,
3
,
1
).
numpy
()
else
:
images
=
local_batch
.
permute
(
0
,
2
,
3
,
4
,
1
).
numpy
()
with
tf
.
GradientTape
()
as
tape
:
activations
=
model
(
images
)
filters
=
model
.
get_weights
()
loss
=
sparse_loss
(
filters
[
0
],
filters
[
1
],
filters
[
2
],
filters
[
3
],
filters
[
4
],
images
,
activations
,
args
.
batch_size
,
args
.
lam
,
args
.
stride
)
# recon = model.do_recon(activations)
# loss = 0.5 * (1/batch_size) * tf.math.reduce_sum(tf.math.pow(images - recon, 2))
# loss += lam * tf.reduce_mean(tf.math.reduce_sum(tf.math.abs(tf.reshape(activations, (batch_size, -1))), axis=1))
recon
,
activations
=
model
(
images
)
loss
=
sparse_loss
(
recon
,
activations
,
args
.
batch_size
,
args
.
lam
,
args
.
stride
)
epoch_loss
+=
loss
*
local_batch
.
size
(
0
)
tf
.
print
(
'
loss:
'
,
loss
)
gradients
=
tape
.
gradient
(
loss
,
model
.
trainable_weights
)
tf
.
print
(
'
gradients:
'
,
tf
.
reduce_sum
(
gradients
))
filter_optimizer
.
apply_gradients
(
zip
(
gradients
,
model
.
trainable_weights
))
tf
.
print
(
'
weights:
'
,
tf
.
reduce_sum
(
model
.
trainable_weights
))
if
args
.
run_2d
:
weights
=
normalize_weights
(
model
.
get_weights
(),
args
.
num_kernels
)
else
:
weights
=
normalize_weights_3d
(
model
.
get_weights
(),
args
.
num_kernels
)
model
.
set_weights
(
weights
)
tf
.
print
(
'
normalized weights:
'
,
tf
.
reduce_sum
(
model
.
trainable_weights
))
epoch_end
=
time
.
perf_counter
()
epoch_loss
/=
len
(
train_loader
.
sampler
)
if
args
.
save_filters
and
epoch
%
5
==
0
:
if
args
.
run_2d
:
filters
=
plot_filters
(
tf
.
stack
(
model
.
get_weights
(),
axis
=
0
))
else
:
filters
=
plot_filters
(
model
.
get_weights
()[
0
])
filters
.
save
(
os
.
path
.
join
(
args
.
output_dir
,
'
filters_
'
+
str
(
epoch
)
+
'
.mp4
'
))
if
epoch_loss
<
best_so_far
:
print
(
"
found better model
"
)
# Save model parameters
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment