Skip to content
Snippets Groups Projects
Commit 2ae88a8e authored by hannandarryl's avatar hannandarryl
Browse files

first fully functioning surface model

parent 41996eae
Branches
Tags
No related merge requests found
......@@ -16,6 +16,7 @@ from sparse_coding_torch.mobile_model import NetTensorFlowWrapper
import time
import csv
from datetime import datetime
from yolov4.get_bounding_boxes import YoloModel
if __name__ == "__main__":
parser = argparse.ArgumentParser()
......@@ -64,6 +65,8 @@ if __name__ == "__main__":
checkpoint = torch.load(args.checkpoint, map_location=device)
predictive_model.load_state_dict(checkpoint['model_state_dict'])
yolo_model = YoloModel()
transform = torchvision.transforms.Compose(
[VideoGrayScaler(),
MinMaxScaler(0, 255),
......@@ -85,18 +88,40 @@ if __name__ == "__main__":
vc = VideoClips([os.path.join(args.input_directory, f)],
clip_length_in_frames=5,
frame_rate=20,
frames_between_clips=1)
frames_between_clips=5)
clip_predictions = []
for i in range(vc.num_clips()):
clip, _, _, _ = vc.get_clip(i)
clip = clip.swapaxes(1, 3).swapaxes(0, 1).swapaxes(2, 3).to(torch.float)
clip = transform(clip)
clip = clip.swapaxes(1, 3).swapaxes(0, 1).swapaxes(2, 3).numpy()
bounding_boxes = yolo_model.get_bounding_boxes(clip[:, 2, :, :].swapaxes(0, 2).swapaxes(0, 1)).squeeze(0)
if bounding_boxes.size == 0:
continue
for bb in bounding_boxes:
center_x = bb[0] * 1920
center_y = bb[1] * 1080
# width = region['relative_coordinates']['width'] * 1920
# height = region['relative_coordinates']['height'] * 1080
width=400
height=400
lower_y = round(center_y - height / 2)
upper_y = round(center_y + height / 2)
lower_x = round(center_x - width / 2)
upper_x = round(center_x + width / 2)
trimmed_clip = clip[:, :, lower_y:upper_y, lower_x:upper_x]
trimmed_clip = torch.tensor(trimmed_clip).to(torch.float)
trimmed_clip = transform(trimmed_clip)
with torch.no_grad():
clip = clip.unsqueeze(0).to(device)
trimmed_clip = trimmed_clip.unsqueeze(0).to(device)
start_sparse_time = time.time()
activations = frozen_sparse(clip)
activations = frozen_sparse(trimmed_clip)
end_sparse_time = time.time()
# Note that you can get activations here
......
yolov4 @ 9f16748a
Subproject commit 9f16748aa3f45ff240608da4bd9b1216a29127f5
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment