Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sparse_coding_torch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Teachable AI Lab
sparse_coding_torch
Commits
3d931dab
Commit
3d931dab
authored
3 years ago
by
hannandarryl
Browse files
Options
Downloads
Patches
Plain Diff
keras training code
parent
13ae3ca4
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
keras/keras_model.py
+69
-71
69 additions, 71 deletions
keras/keras_model.py
keras/train_sparse_model.py
+46
-17
46 additions, 17 deletions
keras/train_sparse_model.py
with
115 additions
and
88 deletions
keras/keras_model.py
+
69
−
71
View file @
3d931dab
...
@@ -9,84 +9,89 @@ import torch.nn as nn
...
@@ -9,84 +9,89 @@ import torch.nn as nn
from
sparse_coding_torch.video_loader
import
VideoGrayScaler
,
MinMaxScaler
from
sparse_coding_torch.video_loader
import
VideoGrayScaler
,
MinMaxScaler
from
sparse_coding_torch.conv_sparse_model
import
ConvSparseLayer
from
sparse_coding_torch.conv_sparse_model
import
ConvSparseLayer
class
SparseCode
(
keras
.
layers
.
Layer
):
def
__init__
(
self
,
pytorch_checkpoint
,
batch_size
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
lam
,
activation_lr
,
max_activation_iter
):
super
(
SparseCode
,
self
).
__init__
()
self
.
out_channels
=
out_channels
self
.
in_channels
=
in_channels
self
.
stride
=
stride
self
.
lam
=
lam
self
.
activation_lr
=
activation_lr
self
.
max_activation_iter
=
max_activation_iter
self
.
batch_size
=
batch_size
# pytorch_checkpoint = torch.load(pytorch_checkpoint, map_location='cpu')
# weight_tensor = pytorch_checkpoint['model_state_dict']['filters'].swapaxes(1,3).swapaxes(2,4).swapaxes(0,4)
# self.filter = tf.Variable(initial_value=weight_tensor.numpy(), dtype='float32')
# weight_list = torch.chunk(weight_tensor, 5, dim=2)
#
initializer
=
tf
.
keras
.
initializers
.
HeNormal
()
self
.
filters_1
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
out_channels
,
in_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_2
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
out_channels
,
in_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_3
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
out_channels
,
in_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_4
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
out_channels
,
in_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_5
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
out_channels
,
in_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
def
normalize_weights
(
self
):
norms
=
tf
.
norm
(
tf
.
reshape
(
tf
.
stack
([
self
.
filters_1
,
self
.
filters_2
,
self
.
filters_3
,
self
.
filters_4
,
self
.
filters_5
]),
(
self
.
out_channels
,
-
1
)),
axis
=
1
,
keepdims
=
True
)
norms
=
tf
.
broadcast_to
(
tf
.
math
.
maximum
(
norms
,
1e-12
*
tf
.
ones_like
(
norms
)),
self
.
filters_1
.
shape
)
self
.
filters_1
=
self
.
filters_1
/
norms
self
.
filters_2
=
self
.
filters_2
/
norms
self
.
filters_3
=
self
.
filters_3
/
norms
self
.
filters_4
=
self
.
filters_4
/
norms
self
.
filters_5
=
self
.
filters_5
/
norms
@tf.function
@tf.function
def
do_recon
(
self
,
activations
):
def
do_recon
(
filters_1
,
filters_2
,
filters_3
,
filters_4
,
filters_5
,
activations
,
batch_size
,
stride
):
out_1
=
tf
.
nn
.
conv2d_transpose
(
activations
,
self
.
filters_1
,
output_shape
=
(
self
.
batch_size
,
100
,
200
,
1
),
strides
=
self
.
stride
)
out_1
=
tf
.
nn
.
conv2d_transpose
(
activations
,
filters_1
,
output_shape
=
(
batch_size
,
100
,
200
,
1
),
strides
=
stride
)
out_2
=
tf
.
nn
.
conv2d_transpose
(
activations
,
self
.
filters_2
,
output_shape
=
(
self
.
batch_size
,
100
,
200
,
1
),
strides
=
self
.
stride
)
out_2
=
tf
.
nn
.
conv2d_transpose
(
activations
,
filters_2
,
output_shape
=
(
batch_size
,
100
,
200
,
1
),
strides
=
stride
)
out_3
=
tf
.
nn
.
conv2d_transpose
(
activations
,
self
.
filters_3
,
output_shape
=
(
self
.
batch_size
,
100
,
200
,
1
),
strides
=
self
.
stride
)
out_3
=
tf
.
nn
.
conv2d_transpose
(
activations
,
filters_3
,
output_shape
=
(
batch_size
,
100
,
200
,
1
),
strides
=
stride
)
out_4
=
tf
.
nn
.
conv2d_transpose
(
activations
,
self
.
filters_4
,
output_shape
=
(
self
.
batch_size
,
100
,
200
,
1
),
strides
=
self
.
stride
)
out_4
=
tf
.
nn
.
conv2d_transpose
(
activations
,
filters_4
,
output_shape
=
(
batch_size
,
100
,
200
,
1
),
strides
=
stride
)
out_5
=
tf
.
nn
.
conv2d_transpose
(
activations
,
self
.
filters_5
,
output_shape
=
(
self
.
batch_size
,
100
,
200
,
1
),
strides
=
self
.
stride
)
out_5
=
tf
.
nn
.
conv2d_transpose
(
activations
,
filters_5
,
output_shape
=
(
batch_size
,
100
,
200
,
1
),
strides
=
stride
)
recon
=
tf
.
concat
([
out_1
,
out_2
,
out_3
,
out_4
,
out_5
],
axis
=
3
)
recon
=
tf
.
concat
([
out_1
,
out_2
,
out_3
,
out_4
,
out_5
],
axis
=
3
)
return
recon
return
recon
@tf.function
@tf.function
def
do_recon_3d
(
self
,
activations
):
def
do_recon_3d
(
filters
,
activations
,
batch_size
,
stride
):
recon
=
tf
.
nn
.
conv3d_transpose
(
activations
,
self
.
filter
,
output_shape
=
(
self
.
batch_size
,
5
,
100
,
200
,
1
),
strides
=
self
.
stride
)
recon
=
tf
.
nn
.
conv3d_transpose
(
activations
,
filter
s
,
output_shape
=
(
batch_size
,
5
,
100
,
200
,
1
),
strides
=
stride
)
return
recon
return
recon
@tf.function
@tf.function
def
conv_error
(
self
,
e
):
def
conv_error
(
filters_1
,
filters_2
,
filters_3
,
filters_4
,
filters_5
,
e
,
strid
e
):
e1
,
e2
,
e3
,
e4
,
e5
=
tf
.
split
(
e
,
5
,
axis
=
3
)
e1
,
e2
,
e3
,
e4
,
e5
=
tf
.
split
(
e
,
5
,
axis
=
3
)
g
=
tf
.
nn
.
conv2d
(
e1
,
self
.
filters_1
,
strides
=
self
.
stride
,
padding
=
'
SAME
'
)
g
=
tf
.
nn
.
conv2d
(
e1
,
filters_1
,
strides
=
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e2
,
self
.
filters_2
,
strides
=
self
.
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e2
,
filters_2
,
strides
=
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e3
,
self
.
filters_3
,
strides
=
self
.
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e3
,
filters_3
,
strides
=
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e4
,
self
.
filters_4
,
strides
=
self
.
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e4
,
filters_4
,
strides
=
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e5
,
self
.
filters_5
,
strides
=
self
.
stride
,
padding
=
'
SAME
'
)
g
=
g
+
tf
.
nn
.
conv2d
(
e5
,
filters_5
,
strides
=
stride
,
padding
=
'
SAME
'
)
return
g
return
g
@tf.function
@tf.function
def
conv_error_3d
(
self
,
e
):
def
conv_error_3d
(
filters
,
e
,
strid
e
):
g
=
tf
.
nn
.
conv3d
(
e
,
self
.
filter
,
strides
=
[
1
,
1
,
1
,
1
,
1
],
padding
=
'
SAME
'
)
g
=
tf
.
nn
.
conv3d
(
e
,
filter
s
,
strides
=
[
stride
,
stride
,
stride
,
stride
,
stride
],
padding
=
'
SAME
'
)
return
g
return
g
@tf.function
def
normalize_weights
(
filters
,
out_channels
):
norms
=
tf
.
norm
(
tf
.
reshape
(
tf
.
stack
(
filters
),
(
out_channels
,
-
1
)),
axis
=
1
)
norms
=
tf
.
broadcast_to
(
tf
.
math
.
maximum
(
norms
,
1e-12
*
tf
.
ones_like
(
norms
)),
filters
[
0
].
shape
)
adjusted
=
[
f
/
norms
for
f
in
filters
]
return
adjusted
class
SparseCode
(
keras
.
layers
.
Layer
):
def
__init__
(
self
,
pytorch_checkpoint
,
batch_size
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
lam
,
activation_lr
,
max_activation_iter
):
super
(
SparseCode
,
self
).
__init__
()
self
.
out_channels
=
out_channels
self
.
in_channels
=
in_channels
self
.
stride
=
stride
self
.
lam
=
lam
self
.
activation_lr
=
activation_lr
self
.
max_activation_iter
=
max_activation_iter
self
.
batch_size
=
batch_size
# pytorch_checkpoint = torch.load(pytorch_checkpoint, map_location='cpu')
# weight_tensor = pytorch_checkpoint['model_state_dict']['filters'].swapaxes(1,3).swapaxes(2,4).swapaxes(0,4)
# self.filter = tf.Variable(initial_value=weight_tensor.numpy(), dtype='float32')
# weight_list = torch.chunk(weight_tensor, 5, dim=2)
#
initializer
=
tf
.
keras
.
initializers
.
HeNormal
()
self
.
filters_1
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_2
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_3
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_4
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
self
.
filters_5
=
tf
.
Variable
(
initial_value
=
initializer
(
shape
=
(
kernel_size
,
kernel_size
,
in_channels
,
out_channels
)),
dtype
=
'
float32
'
,
trainable
=
True
)
weights
=
normalize_weights
(
self
.
get_weights
(),
out_channels
)
self
.
set_weights
(
weights
)
@tf.function
@tf.function
def
do_update
(
self
,
images
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
):
def
do_update
(
self
,
images
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
):
activations
=
tf
.
nn
.
relu
(
u
-
self
.
lam
)
activations
=
tf
.
nn
.
relu
(
u
-
self
.
lam
)
recon
=
self
.
do_recon
(
activations
)
recon
=
do_recon
(
self
.
filters_1
,
self
.
filters_2
,
self
.
filters_3
,
self
.
filters_4
,
self
.
filters_5
,
activations
,
self
.
batch_size
,
self
.
stride
)
e
=
images
-
recon
e
=
images
-
recon
g
=
-
1
*
u
g
=
-
1
*
u
g
=
g
+
self
.
conv_error
(
e
)
convd_error
=
conv_error
(
self
.
filters_1
,
self
.
filters_2
,
self
.
filters_3
,
self
.
filters_4
,
self
.
filters_5
,
e
,
self
.
stride
)
g
=
g
+
convd_error
g
=
g
+
activations
g
=
g
+
activations
...
@@ -94,37 +99,30 @@ class SparseCode(keras.layers.Layer):
...
@@ -94,37 +99,30 @@ class SparseCode(keras.layers.Layer):
v
=
b2
*
v
+
(
1
-
b2
)
*
g
**
2
v
=
b2
*
v
+
(
1
-
b2
)
*
g
**
2
mh
=
m
/
(
1
-
b1
**
(
1
+
i
))
mh
=
m
/
(
1
-
b1
**
(
1
+
i
))
vh
=
v
/
(
1
-
b2
**
(
1
+
i
))
vh
=
v
/
(
1
-
b2
**
(
1
+
i
))
u
=
u
+
(
self
.
activation_lr
*
mh
/
(
tf
.
math
.
sqrt
(
vh
)
+
eps
))
return
u
,
m
,
v
du
=
self
.
activation_lr
*
mh
/
(
tf
.
math
.
sqrt
(
vh
)
+
eps
)
u
+=
du
def
loss
(
self
,
images
,
activations
):
return
u
,
m
,
v
recon
=
self
.
do_recon
(
activations
)
loss
=
0.5
*
(
1
/
images
.
shape
[
0
])
*
tf
.
sum
(
tf
.
math
.
pow
(
images
-
recon
,
2
))
loss
+=
self
.
lam
*
tf
.
reduce_mean
(
tf
.
sum
(
tf
.
math
.
abs
(
activations
.
reshape
(
activations
.
shape
[
0
],
-
1
)),
axis
=
1
))
return
loss
@tf.function
@tf.function
def
call
(
self
,
images
):
def
call
(
self
,
images
):
u
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
5
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
u
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
m
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
5
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
m
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
v
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
5
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
v
=
tf
.
zeros
(
shape
=
(
self
.
batch_size
,
100
//
self
.
stride
,
200
//
self
.
stride
,
self
.
out_channels
))
tf
.
print
(
'
activations before:
'
,
tf
.
reduce_sum
(
u
))
b1
=
0.9
b1
=
0.9
b2
=
0.999
b2
=
0.999
eps
=
1e-8
eps
=
1e-8
# images, u, m, v, b1, b2, eps, i = self.do_update(images, u, m, v, b1, b2, eps, 0)
# i = tf.constant(0, dtype=tf.float16)
# c = lambda images, u, m, v, b1, b2, eps, i: tf.less(i, 20)
# images, u, m, v, b1, b2, eps, i = tf.while_loop(c, self.do_update, [images, u, m, v, b1, b2, eps, i], shape_invariants=[images.get_shape(), tf.TensorShape([None, 100, 200, self.out_channels]), tf.TensorShape([None, 100, 200, self.out_channels]), tf.TensorShape([None, 100, 200, self.out_channels]), None, None, None, i.get_shape()])
for
i
in
range
(
self
.
max_activation_iter
):
for
i
in
range
(
self
.
max_activation_iter
):
u
,
m
,
v
=
self
.
do_update
(
images
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
)
u
,
m
,
v
=
self
.
do_update
(
images
,
u
,
m
,
v
,
b1
,
b2
,
eps
,
i
)
u
=
tf
.
nn
.
relu
(
u
-
self
.
lam
)
u
=
tf
.
nn
.
relu
(
u
-
self
.
lam
)
self
.
add_loss
(
self
.
loss
(
images
,
u
))
tf
.
print
(
'
activations after:
'
,
tf
.
reduce_sum
(
u
))
return
u
return
u
...
...
This diff is collapsed.
Click to expand it.
keras/train_sparse_model.py
+
46
−
17
View file @
3d931dab
...
@@ -8,6 +8,9 @@ from tqdm import tqdm
...
@@ -8,6 +8,9 @@ from tqdm import tqdm
import
argparse
import
argparse
import
os
import
os
from
sparse_coding_torch.load_data
import
load_yolo_clips
from
sparse_coding_torch.load_data
import
load_yolo_clips
import
tensorflow.keras
as
keras
import
tensorflow
as
tf
from
keras_model
import
SparseCode
,
do_recon
,
normalize_weights
def
plot_video
(
video
):
def
plot_video
(
video
):
...
@@ -83,16 +86,21 @@ def plot_filters(filters):
...
@@ -83,16 +86,21 @@ def plot_filters(filters):
return
FuncAnimation
(
plt
.
gcf
(),
update
,
interval
=
1000
/
20
)
return
FuncAnimation
(
plt
.
gcf
(),
update
,
interval
=
1000
/
20
)
def
sparse_loss
(
filters_1
,
filters_2
,
filters_3
,
filters_4
,
filters_5
,
images
,
activations
,
batch_size
,
lam
,
stride
):
recon
=
do_recon
(
filters_1
,
filters_2
,
filters_3
,
filters_4
,
filters_5
,
activations
,
batch_size
,
stride
)
loss
=
0.5
*
(
1
/
batch_size
)
*
tf
.
math
.
reduce_sum
(
tf
.
math
.
pow
(
images
-
recon
,
2
))
loss
+=
lam
*
tf
.
reduce_mean
(
tf
.
math
.
reduce_sum
(
tf
.
math
.
abs
(
tf
.
reshape
(
activations
,
(
batch_size
,
-
1
))),
axis
=
1
))
return
loss
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'
--batch_size
'
,
default
=
12
,
type
=
int
)
parser
.
add_argument
(
'
--batch_size
'
,
default
=
8
,
type
=
int
)
parser
.
add_argument
(
'
--kernel_size
'
,
default
=
15
,
type
=
int
)
parser
.
add_argument
(
'
--kernel_size
'
,
default
=
15
,
type
=
int
)
parser
.
add_argument
(
'
--num_kernels
'
,
default
=
64
,
type
=
int
)
parser
.
add_argument
(
'
--num_kernels
'
,
default
=
64
,
type
=
int
)
parser
.
add_argument
(
'
--stride
'
,
default
=
1
,
type
=
int
)
parser
.
add_argument
(
'
--stride
'
,
default
=
2
,
type
=
int
)
parser
.
add_argument
(
'
--max_activation_iter
'
,
default
=
20
0
,
type
=
int
)
parser
.
add_argument
(
'
--max_activation_iter
'
,
default
=
15
0
,
type
=
int
)
parser
.
add_argument
(
'
--activation_lr
'
,
default
=
1e-2
,
type
=
float
)
parser
.
add_argument
(
'
--activation_lr
'
,
default
=
1e-2
,
type
=
float
)
parser
.
add_argument
(
'
--lr
'
,
default
=
1e-
3
,
type
=
float
)
parser
.
add_argument
(
'
--lr
'
,
default
=
1e-
5
,
type
=
float
)
parser
.
add_argument
(
'
--epochs
'
,
default
=
100
,
type
=
int
)
parser
.
add_argument
(
'
--epochs
'
,
default
=
100
,
type
=
int
)
parser
.
add_argument
(
'
--lam
'
,
default
=
0.05
,
type
=
float
)
parser
.
add_argument
(
'
--lam
'
,
default
=
0.05
,
type
=
float
)
parser
.
add_argument
(
'
--output_dir
'
,
default
=
'
./output
'
,
type
=
str
)
parser
.
add_argument
(
'
--output_dir
'
,
default
=
'
./output
'
,
type
=
str
)
...
@@ -104,15 +112,17 @@ if __name__ == "__main__":
...
@@ -104,15 +112,17 @@ if __name__ == "__main__":
if
not
os
.
path
.
exists
(
output_dir
):
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
os
.
makedirs
(
output_dir
)
device
=
torch
.
device
(
"
cuda:0
"
if
torch
.
cuda
.
is_available
()
else
"
cpu
"
)
with
open
(
os
.
path
.
join
(
output_dir
,
'
arguments.txt
'
),
'
w+
'
)
as
out_f
:
with
open
(
os
.
path
.
join
(
output_dir
,
'
arguments.txt
'
),
'
w+
'
)
as
out_f
:
out_f
.
write
(
str
(
args
))
out_f
.
write
(
str
(
args
))
train_loader
,
_
=
load_yolo_clips
(
batch_size
,
mode
=
'
all_trai
n
'
)
train_loader
,
_
=
load_yolo_clips
(
args
.
batch_size
,
num_clips
=
1
,
num_positives
=
15
,
mode
=
'
all_train
'
,
device
=
device
,
n_splits
=
1
,
sparse_model
=
None
,
whole_video
=
False
,
positive_videos
=
'
../positive_videos.jso
n
'
)
print
(
'
Loaded
'
,
len
(
train_loader
),
'
train examples
'
)
print
(
'
Loaded
'
,
len
(
train_loader
),
'
train examples
'
)
example_data
=
next
(
iter
(
train_loader
))
example_data
=
next
(
iter
(
train_loader
))
inputs
=
keras
.
Input
(
shape
=
(
5
,
100
,
200
,
1
))
inputs
=
keras
.
Input
(
shape
=
(
100
,
200
,
5
))
output
=
SparseCode
(
'
../sparse.pt
'
,
batch_size
=
args
.
batch_size
,
in_channels
=
1
,
out_channels
=
args
.
num_kernels
,
kernel_size
=
args
.
kernel_size
,
stride
=
args
.
stride
,
lam
=
args
.
lam
,
activation_lr
=
args
.
activation_lr
,
max_activation_iter
=
args
.
max_activation_iter
)(
inputs
)
output
=
SparseCode
(
'
../sparse.pt
'
,
batch_size
=
args
.
batch_size
,
in_channels
=
1
,
out_channels
=
args
.
num_kernels
,
kernel_size
=
args
.
kernel_size
,
stride
=
args
.
stride
,
lam
=
args
.
lam
,
activation_lr
=
args
.
activation_lr
,
max_activation_iter
=
args
.
max_activation_iter
)(
inputs
)
...
@@ -124,21 +134,40 @@ if __name__ == "__main__":
...
@@ -124,21 +134,40 @@ if __name__ == "__main__":
loss_log
=
[]
loss_log
=
[]
best_so_far
=
float
(
'
inf
'
)
best_so_far
=
float
(
'
inf
'
)
for
epoch
in
tqdm
(
range
(
args
.
epochs
)
)
:
for
epoch
in
range
(
args
.
epochs
):
epoch_loss
=
0
epoch_loss
=
0
epoch_start
=
time
.
perf_counter
()
epoch_start
=
time
.
perf_counter
()
for
labels
,
local_batch
,
vid_f
in
train_loader
:
for
labels
,
local_batch
,
vid_f
in
tqdm
(
train_loader
):
tf
.
print
(
vid_f
)
if
local_batch
.
size
(
0
)
!=
args
.
batch_size
:
continue
images
=
local_batch
.
squeeze
(
1
).
permute
(
0
,
2
,
3
,
1
).
numpy
()
with
tf
.
GradientTape
()
as
tape
:
with
tf
.
GradientTape
()
as
tape
:
activations
=
model
(
images
)
filters
=
model
.
get_weights
()
activations
=
model
(
local_batch
.
numpy
())
loss
=
sparse_loss
(
filters
[
0
],
filters
[
1
],
filters
[
2
],
filters
[
3
],
filters
[
4
],
images
,
activations
,
args
.
batch_size
,
args
.
lam
,
args
.
stride
)
loss
=
tf
.
sum
(
model
.
losses
)
# recon = model.do_recon(activations)
# loss = 0.5 * (1/batch_size) * tf.math.reduce_sum(tf.math.pow(images - recon, 2))
# loss += lam * tf.reduce_mean(tf.math.reduce_sum(tf.math.abs(tf.reshape(activations, (batch_size, -1))), axis=1))
epoch_loss
+=
loss
*
local_batch
.
size
(
0
)
epoch_loss
+=
loss
*
local_batch
.
size
(
0
)
tf
.
print
(
'
loss:
'
,
loss
)
gradients
=
tape
.
gradient
(
loss
,
model
.
trainable_weights
)
gradients
=
tape
.
gradient
(
loss
,
model
.
trainable_weights
)
tf
.
print
(
'
gradients:
'
,
tf
.
reduce_sum
(
gradients
))
filter_optimizer
.
apply_gradients
(
zip
(
gradients
,
model
.
trainable_weights
))
tf
.
print
(
'
weights:
'
,
tf
.
reduce_sum
(
model
.
trainable_weights
))
weights
=
normalize_weights
(
model
.
get_weights
(),
args
.
num_kernels
)
model
.
set_weights
(
weights
)
optimizer
.
apply_gradients
(
zip
(
gradients
,
model
.
trainable_weights
))
tf
.
print
(
'
normalized weights:
'
,
tf
.
reduce_sum
(
model
.
trainable_weights
))
epoch_end
=
time
.
perf_counter
()
epoch_end
=
time
.
perf_counter
()
epoch_loss
/=
len
(
train_loader
.
sampler
)
epoch_loss
/=
len
(
train_loader
.
sampler
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment