Skip to content
Snippets Groups Projects
Select Git revision
  • 693e1a5e7fbac57c6bf01279631cbc820602ec88
  • main default
2 results

rsh_server.c

Blame
  • rsh_server.c 24.99 KiB
    
    #include <sys/socket.h>
    #include <sys/wait.h>
    #include <arpa/inet.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <unistd.h>
    #include <sys/un.h>
    #include <fcntl.h>
    #include <signal.h>
    #include <pthread.h>
    
    //INCLUDES for extra credit
    //#include <signal.h>
    //#include <pthread.h>
    //-------------------------
    
    #include "dshlib.h"
    #include "rshlib.h"
    
    typedef struct {
        int cli_socket;
    } client_thread_args_t;
    
    // Function to handle client in a separate thread
    void *client_handler(void *args) {
        client_thread_args_t *client_args = (client_thread_args_t *)args;
        exec_client_requests(client_args->cli_socket);
        close(client_args->cli_socket);
        free(client_args);
        pthread_exit(NULL);
    }
    
    /*
     * start_server(ifaces, port, is_threaded)
     *      ifaces:  a string in ip address format, indicating the interface
     *              where the server will bind.  In almost all cases it will
     *              be the default "0.0.0.0" which binds to all interfaces.
     *              note the constant RDSH_DEF_SVR_INTFACE in rshlib.h
     * 
     *      port:   The port the server will use.  Note the constant 
     *              RDSH_DEF_PORT which is 1234 in rshlib.h.  If you are using
     *              tux you may need to change this to your own default, or even
     *              better use the command line override -s implemented in dsh_cli.c
     *              For example ./dsh -s 0.0.0.0:5678 where 5678 is the new port  
     * 
     *      is_threded:  Used for extra credit to indicate the server should implement
     *                   per thread connections for clients  
     * 
     *      This function basically runs the server by: 
     *          1. Booting up the server
     *          2. Processing client requests until the client requests the
     *             server to stop by running the `stop-server` command
     *          3. Stopping the server. 
     * 
     *      This function is fully implemented for you and should not require
     *      any changes for basic functionality.  
     * 
     *      IF YOU IMPLEMENT THE MULTI-THREADED SERVER FOR EXTRA CREDIT YOU NEED
     *      TO DO SOMETHING WITH THE is_threaded ARGUMENT HOWEVER.  
     */
    int start_server(char *ifaces, int port, int is_threaded){
        int svr_socket;
        int rc;
        //(void)is_threaded; // Suppress unused parameter warning
        //
        //TODO:  If you are implementing the extra credit, please add logic
        //       to keep track of is_threaded to handle this feature
        //
    
    
    
        svr_socket = boot_server(ifaces, port);
        if (svr_socket < 0){
            int err_code = svr_socket;  //server socket will carry error code
            return err_code;
        }
    
    
        printf("Server started in %s mode.\n", is_threaded ? "Multi-Threaded" : "Single-Threaded");
    
        rc = process_cli_requests(svr_socket, is_threaded);
    
    
        stop_server(svr_socket);
    
    
        return rc;
    }
    
    /*
     * stop_server(svr_socket)
     *      svr_socket: The socket that was created in the boot_server()
     *                  function. 
     * 
     *      This function simply returns the value of close() when closing
     *      the socket.  
     */
    int stop_server(int svr_socket){
        return close(svr_socket);
    }
    
    /*
     * boot_server(ifaces, port)
     *      ifaces & port:  see start_server for description.  They are passed
     *                      as is to this function.   
     * 
     *      This function "boots" the rsh server.  It is responsible for all
     *      socket operations prior to accepting client connections.  Specifically: 
     * 
     *      1. Create the server socket using the socket() function. 
     *      2. Calling bind to "bind" the server to the interface and port
     *      3. Calling listen to get the server ready to listen for connections.
     * 
     *      after creating the socket and prior to calling bind you might want to 
     *      include the following code:
     * 
     *      int enable=1;
     *      setsockopt(svr_socket, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int));
     * 
     *      when doing development you often run into issues where you hold onto
     *      the port and then need to wait for linux to detect this issue and free
     *      the port up.  The code above tells linux to force allowing this process
     *      to use the specified port making your life a lot easier.
     * 
     *  Returns:
     * 
     *      server_socket:  Sockets are just file descriptors, if this function is
     *                      successful, it returns the server socket descriptor, 
     *                      which is just an integer.
     * 
     *      ERR_RDSH_COMMUNICATION:  This error code is returned if the socket(),
     *                               bind(), or listen() call fails. 
     * 
     */
    int boot_server(char *ifaces, int port) {
        int svr_socket;
        struct sockaddr_in server_addr;
        int enable = 1;
    
        // Step 1: Create a socket
        svr_socket = socket(AF_INET, SOCK_STREAM, 0);
        if (svr_socket < 0) {
            perror("Error creating server socket");
            fprintf(stderr, CMD_ERR_RDSH_COMM);
            return ERR_RDSH_COMMUNICATION;
        }
    
        // Step 2: Set socket options to allow address reuse
        if (setsockopt(svr_socket, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) < 0) {
            perror("Error setting socket options");
            fprintf(stderr, CMD_ERR_RDSH_COMM);
            close(svr_socket);
            return ERR_RDSH_COMMUNICATION;
        }
    
        // Step 3: Prepare server address structure
        memset(&server_addr, 0, sizeof(server_addr));
        server_addr.sin_family = AF_INET;
        server_addr.sin_port = htons(port);  // Convert port to network byte order
    
        // Convert and assign the interface IP
        if (inet_pton(AF_INET, ifaces, &server_addr.sin_addr) <= 0) {
            perror("Invalid server IP address");
            fprintf(stderr, CMD_ERR_RDSH_COMM);
            close(svr_socket);
            return ERR_RDSH_COMMUNICATION;
        }
    
        // Step 4: Bind the socket
        if (bind(svr_socket, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0) {
            perror("Error binding server socket");
            fprintf(stderr, CMD_ERR_RDSH_COMM);
            close(svr_socket);
            return ERR_RDSH_COMMUNICATION;
        }
    
        // Step 5: Put the socket in listening mode
        if (listen(svr_socket, SOMAXCONN) < 0) {
            perror("Error setting server to listen mode");
            fprintf(stderr, CMD_ERR_RDSH_COMM);
            close(svr_socket);
            return ERR_RDSH_COMMUNICATION;
        }
    
        printf("Server listening on %s:%d\n", ifaces, port);
        return svr_socket;
    
        //return WARN_RDSH_NOT_IMPL;
    }
    
    /*
     * process_cli_requests(svr_socket)
     *      svr_socket:  The server socket that was obtained from boot_server()
     *   
     *  This function handles managing client connections.  It does this using
     *  the following logic
     * 
     *      1.  Starts a while(1) loop:
     *  
     *          a. Calls accept() to wait for a client connection. Recall that 
     *             the accept() function returns another socket specifically
     *             bound to a client connection. 
     *          b. Calls exec_client_requests() to handle executing commands
     *             sent by the client. It will use the socket returned from
     *             accept().
     *          c. Loops back to the top (step 2) to accept connecting another
     *             client.  
     * 
     *          note that the exec_client_requests() return code should be
     *          negative if the client requested the server to stop by sending
     *          the `stop-server` command.  If this is the case step 2b breaks
     *          out of the while(1) loop. 
     * 
     *      2.  After we exit the loop, we need to cleanup.  Dont forget to 
     *          free the buffer you allocated in step #1.  Then call stop_server()
     *          to close the server socket. 
     * 
     *  Returns:
     * 
     *      OK_EXIT:  When the client sends the `stop-server` command this function
     *                should return OK_EXIT. 
     * 
     *      ERR_RDSH_COMMUNICATION:  This error code terminates the loop and is
     *                returned from this function in the case of the accept() 
     *                function failing. 
     * 
     *      OTHERS:   See exec_client_requests() for return codes.  Note that positive
     *                values will keep the loop running to accept additional client
     *                connections, and negative values terminate the server. 
     * 
     */
    
    /* 
    int process_cli_requests(int svr_socket) {
        int cli_socket;
        int rc;
    
        while (1) {
            // Step 1: Accept an incoming client connection
            cli_socket = accept(svr_socket, NULL, NULL);
            if (cli_socket < 0) {
                perror("Error accepting client connection");
                fprintf(stderr, CMD_ERR_RDSH_COMM);
                return ERR_RDSH_COMMUNICATION;
            }
    
            printf("Client connected\n");
    
            // Step 2: Handle client requests
            rc = exec_client_requests(cli_socket);
    
            // Step 3: Close client socket after handling requests
            close(cli_socket);
            printf(RCMD_MSG_CLIENT_EXITED);
    
            // Step 4: If client requested server to stop, break loop
            if (rc == OK_EXIT) {
                printf(RCMD_MSG_SVR_STOP_REQ);
                break;
            }
        }
    
        return OK_EXIT;
    
        
        //return WARN_RDSH_NOT_IMPL;
    }
    
    */
    
    int process_cli_requests(int svr_socket, int is_threaded) {
        int cli_socket;
        int rc;
    
        while (1) {
            // Step 1: Accept a client connection
            cli_socket = accept(svr_socket, NULL, NULL);
            if (cli_socket < 0) {
                perror("Error accepting client connection");
                fprintf(stderr, CMD_ERR_RDSH_COMM);
                return ERR_RDSH_COMMUNICATION;
            }
    
            //printf("Client connected\n");
            printf("Client connected (socket %d)\n", cli_socket);
            fflush(stdout);
    
            // Multi-threaded mode: Create a new thread for each client
            if (is_threaded) {
                pthread_t client_thread;
                client_thread_args_t *args = malloc(sizeof(client_thread_args_t));
                if (!args) {
                    perror("Memory allocation failed for client thread");
                    close(cli_socket);
                    continue;
                }
    
                args->cli_socket = cli_socket;
    
                if (pthread_create(&client_thread, NULL, client_handler, (void *)args) != 0) {
                    perror("Failed to create client thread");
                    free(args);
                    close(cli_socket);
                    continue;
                }
    
                // Detach thread so it cleans up after itself
                pthread_detach(client_thread);
            } else {
                // Single-threaded mode: Handle client in main thread
                rc = exec_client_requests(cli_socket);
                close(cli_socket);
                printf(RCMD_MSG_CLIENT_EXITED);
    
                if (rc == OK_EXIT) {
                    printf(RCMD_MSG_SVR_STOP_REQ);
                    break;
                }
            }
        }
    
        return OK_EXIT;
    }
    
    
    /*
     * exec_client_requests(cli_socket)
     *      cli_socket:  The server-side socket that is connected to the client
     *   
     *  This function handles accepting remote client commands. The function will
     *  loop and continue to accept and execute client commands.  There are 2 ways
     *  that this ongoing loop accepting client commands ends:
     * 
     *      1.  When the client executes the `exit` command, this function returns
     *          to process_cli_requests() so that we can accept another client
     *          connection. 
     *      2.  When the client executes the `stop-server` command this function
     *          returns to process_cli_requests() with a return code of OK_EXIT
     *          indicating that the server should stop. 
     * 
     *  Note that this function largely follows the implementation of the
     *  exec_local_cmd_loop() function that you implemented in the last 
     *  shell program deliverable. The main difference is that the command will
     *  arrive over the recv() socket call rather than reading a string from the
     *  keyboard. 
     * 
     *  This function also must send the EOF character after a command is
     *  successfully executed to let the client know that the output from the
     *  command it sent is finished.  Use the send_message_eof() to accomplish 
     *  this. 
     * 
     *  Of final note, this function must allocate a buffer for storage to 
     *  store the data received by the client. For example:
     *     io_buff = malloc(RDSH_COMM_BUFF_SZ);
     *  And since it is allocating storage, it must also properly clean it up
     *  prior to exiting.
     * 
     *  Returns:
     * 
     *      OK:       The client sent the `exit` command.  Get ready to connect
     *                another client. 
     *      OK_EXIT:  The client sent `stop-server` command to terminate the server
     * 
     *      ERR_RDSH_COMMUNICATION:  A catch all for any socket() related send
     *                or receive errors. 
     */
    int exec_client_requests(int cli_socket) {
        char *io_buff;
        ssize_t recv_size;
        int rc;
    
        // Step 1: Allocate buffer for receiving client data
        io_buff = (char *)malloc(RDSH_COMM_BUFF_SZ);
        if (!io_buff) {
            fprintf(stderr, "Error: Memory allocation failed\n");
            return ERR_RDSH_COMMUNICATION;
        }
    
        while (1) {
            // Send the prompt before reading input
            send_message_string(cli_socket, SH_PROMPT);
            // Step 2: Receive command from client
            recv_size = recv(cli_socket, io_buff, RDSH_COMM_BUFF_SZ - 1, 0);
            if (recv_size < 0) {
                perror("Error receiving command from client");
                fprintf(stderr, CMD_ERR_RDSH_COMM);
                free(io_buff);
                return ERR_RDSH_COMMUNICATION;
            }
    
            // Step 3: Check for client disconnection
            if (recv_size == 0) {
                printf("Client disconnected\n");
                free(io_buff);
                return OK;
            }
    
            // Ensure null termination of received data
            io_buff[recv_size] = '\0';
    
            printf(RCMD_MSG_SVR_EXEC_REQ, io_buff);
    
            // Step 4: Check for built-in commands
            if (strcmp(io_buff, "exit") == 0) {
                send_message_string(cli_socket, RCMD_MSG_CLIENT_EXITED "\n");
    
                free(io_buff);
                return OK;
            }
    
            if (strcmp(io_buff, "stop-server") == 0) {
                send_message_string(cli_socket, "dsh4> stop-server\n" RCMD_MSG_SVR_STOP_REQ "\n");
                fflush(stdout); 
                printf("stopping ...");
                usleep(200000);
                free(io_buff);
                printf("stopping ...");
                return OK_EXIT;
            }
    
            // Step 5: Parse and execute the command pipeline
            command_list_t clist;
            rc = build_cmd_list(io_buff, &clist);
            if (rc != OK) {
                send_message_string(cli_socket, CMD_ERR_RDSH_EXEC);
            } else {
                rc = rsh_execute_pipeline(cli_socket, &clist);
                free_cmd_list(&clist);
            }
    
            // Step 6: Send EOF character to mark end of response
            send_message_eof(cli_socket);
        }
    
        // Cleanup before exiting
        free(io_buff);
        return OK;
        
        //return WARN_RDSH_NOT_IMPL;
    }
    
    /*
     * send_message_eof(cli_socket)
     *      cli_socket:  The server-side socket that is connected to the client
    
     *  Sends the EOF character to the client to indicate that the server is
     *  finished executing the command that it sent. 
     * 
     *  Returns:
     * 
     *      OK:  The EOF character was sent successfully. 
     * 
     *      ERR_RDSH_COMMUNICATION:  The send() socket call returned an error or if
     *           we were unable to send the EOF character. 
     */
    int send_message_eof(int cli_socket){
        
        int bytes_sent;
    
        // Send EOF character to client
        bytes_sent = send(cli_socket, &RDSH_EOF_CHAR, 1, 0);
        if (bytes_sent < 0) {
            perror("Error sending EOF to client");
            fprintf(stderr, CMD_ERR_RDSH_COMM);
            return ERR_RDSH_COMMUNICATION;
        }
    
        return OK;
        
        //return WARN_RDSH_NOT_IMPL;
    }
    
    /*
     * send_message_string(cli_socket, char *buff)
     *      cli_socket:  The server-side socket that is connected to the client
     *      buff:        A C string (aka null terminated) of a message we want
     *                   to send to the client. 
     *   
     *  Sends a message to the client.  Note this command executes both a send()
     *  to send the message and a send_message_eof() to send the EOF character to
     *  the client to indicate command execution terminated. 
     * 
     *  Returns:
     * 
     *      OK:  The message in buff followed by the EOF character was 
     *           sent successfully. 
     * 
     *      ERR_RDSH_COMMUNICATION:  The send() socket call returned an error or if
     *           we were unable to send the message followed by the EOF character. 
     */
    int send_message_string(int cli_socket, char *buff){
        
        int bytes_sent, msg_length;
    
        // Validate input
        if (!buff) {
            fprintf(stderr, "Error: Null buffer passed to send_message_string()\n");
            return ERR_RDSH_COMMUNICATION;
        }
    
        msg_length = strlen(buff); // Get message length
    
        // Step 1: Send the message
        bytes_sent = send(cli_socket, buff, msg_length, 0);
        if (bytes_sent < 0) {
            perror("Error sending message to client");
            fprintf(stderr, CMD_ERR_RDSH_COMM);
            return ERR_RDSH_COMMUNICATION;
        }
    
        // Check for partial send
        if (bytes_sent != msg_length) {
            fprintf(stderr, CMD_ERR_RDSH_SEND, bytes_sent, msg_length);
            return ERR_RDSH_COMMUNICATION;
        }
    
        if (msg_length == 0) {
            return send_message_eof(cli_socket); // Ensure EOF is always sent
        }
        
        // Step 2: Send EOF character
        return send_message_eof(cli_socket);
        
    
        
        //return WARN_RDSH_NOT_IMPL;
    }
    
    
    /*
     * rsh_execute_pipeline(int cli_sock, command_list_t *clist)
     *      cli_sock:    The server-side socket that is connected to the client
     *      clist:       The command_list_t structure that we implemented in
     *                   the last shell. 
     *   
     *  This function executes the command pipeline.  It should basically be a
     *  replica of the execute_pipeline() function from the last deliverable. 
     *  The only thing different is that you will be using the cli_sock as the
     *  main file descriptor on the first executable in the pipeline for STDIN,
     *  and the cli_sock for the file descriptor for STDOUT, and STDERR for the
     *  last executable in the pipeline.  See picture below:  
     * 
     *      
     *┌───────────┐                                                    ┌───────────┐
     *│ cli_sock  │                                                    │ cli_sock  │
     *└─────┬─────┘                                                    └────▲──▲───┘
     *      │   ┌──────────────┐     ┌──────────────┐     ┌──────────────┐  │  │    
     *      │   │   Process 1  │     │   Process 2  │     │   Process N  │  │  │    
     *      │   │              │     │              │     │              │  │  │    
     *      └───▶stdin   stdout├─┬──▶│stdin   stdout├─┬──▶│stdin   stdout├──┘  │    
     *          │              │ │   │              │ │   │              │     │    
     *          │        stderr├─┘   │        stderr├─┘   │        stderr├─────┘    
     *          └──────────────┘     └──────────────┘     └──────────────┘   
     *                                                      WEXITSTATUS()
     *                                                      of this last
     *                                                      process to get
     *                                                      the return code
     *                                                      for this function       
     * 
     *  Returns:
     * 
     *      EXIT_CODE:  This function returns the exit code of the last command
     *                  executed in the pipeline.  If only one command is executed
     *                  that value is returned.  Remember, use the WEXITSTATUS()
     *                  macro that we discussed during our fork/exec lecture to
     *                  get this value. 
     */
    int rsh_execute_pipeline(int cli_sock, command_list_t *clist) {
     
        int num_cmds = clist->num;
        int prev_pipe = -1;
        int fd[2];
        pid_t pids[num_cmds];
    
        for (int i = 0; i < num_cmds; i++) {
            if (i < num_cmds - 1 && pipe(fd) < 0) {
                perror("pipe");
                fprintf(stderr, CMD_ERR_RDSH_EXEC);
                return ERR_RDSH_CMD_EXEC;
            }
    
            pids[i] = fork();
            if (pids[i] < 0) {
                perror("fork");
                fprintf(stderr, CMD_ERR_RDSH_EXEC);
                return ERR_RDSH_CMD_EXEC;
            }
    
            if (pids[i] == 0) {  // Child Process
                if (i == 0) {
                    // First command: Redirect stdin from the client socket
                    dup2(cli_sock, STDIN_FILENO);
                } else {
                    // Redirect stdin from the previous pipe
                    dup2(prev_pipe, STDIN_FILENO);
                    close(prev_pipe);
                }
    
                if (i < num_cmds - 1) {
                    // Not the last command: Redirect stdout to the pipe
                    dup2(fd[1], STDOUT_FILENO);
                    close(fd[1]);
                } else {
                    // Last command: Redirect stdout and stderr to client socket
                    dup2(cli_sock, STDOUT_FILENO);
                    dup2(cli_sock, STDERR_FILENO);
                }
    
                // Close all open file descriptors
                if (i > 0) {
                    close(prev_pipe);
                }
                if (i < num_cmds - 1) {
                    close(fd[0]);
                    close(fd[1]); // Ensure both pipe ends are closed
                }
                
    
                execvp(clist->commands[i].argv[0], clist->commands[i].argv);
                perror("execvp failed");
                fprintf(stderr, CMD_ERR_RDSH_EXEC);
                exit(ERR_RDSH_CMD_EXEC);
            } else { // Parent Process
                if (i > 0) close(prev_pipe);
                if (i < num_cmds - 1) {
                    prev_pipe = fd[0];
                    close(fd[1]);
                }
            }
        }
    
        // Wait for all children to finish
        int status;
        for (int i = 0; i < num_cmds; i++) {
            waitpid(pids[i], &status, 0);
        }
    
        // Send EOF to indicate command completion
        send_message_eof(cli_sock);
    
        return WEXITSTATUS(status);
    
        
        //return WARN_RDSH_NOT_IMPL;
    }
    
    /**************   OPTIONAL STUFF  ***************/
    /****
     **** NOTE THAT THE FUNCTIONS BELOW ALIGN TO HOW WE CRAFTED THE SOLUTION
     **** TO SEE IF A COMMAND WAS BUILT IN OR NOT.  YOU CAN USE A DIFFERENT
     **** STRATEGY IF YOU WANT.  IF YOU CHOOSE TO DO SO PLEASE REMOVE THESE
     **** FUNCTIONS AND THE PROTOTYPES FROM rshlib.h
     **** 
     */
    
    /*
     * rsh_match_command(const char *input)
     *      cli_socket:  The string command for a built-in command, e.g., dragon,
     *                   cd, exit-server
     *   
     *  This optional function accepts a command string as input and returns
     *  one of the enumerated values from the BuiltInCmds enum as output. For
     *  example:
     * 
     *      Input             Output
     *      exit              BI_CMD_EXIT
     *      dragon            BI_CMD_DRAGON
     * 
     *  This function is entirely optional to implement if you want to handle
     *  processing built-in commands differently in your implementation. 
     * 
     *  Returns:
     * 
     *      BI_CMD_*:   If the command is built-in returns one of the enumeration
     *                  options, for example "cd" returns BI_CMD_CD
     * 
     *      BI_NOT_BI:  If the command is not "built-in" the BI_NOT_BI value is
     *                  returned. 
     */
    Built_In_Cmds rsh_match_command(const char *input)
    {
        (void)input; // Suppress unused parameter warning
        return BI_NOT_IMPLEMENTED;
    }
    
    /*
     * rsh_built_in_cmd(cmd_buff_t *cmd)
     *      cmd:  The cmd_buff_t of the command, remember, this is the 
     *            parsed version fo the command
     *   
     *  This optional function accepts a parsed cmd and then checks to see if
     *  the cmd is built in or not.  It calls rsh_match_command to see if the 
     *  cmd is built in or not.  Note that rsh_match_command returns BI_NOT_BI
     *  if the command is not built in. If the command is built in this function
     *  uses a switch statement to handle execution if appropriate.   
     * 
     *  Again, using this function is entirely optional if you are using a different
     *  strategy to handle built-in commands.  
     * 
     *  Returns:
     * 
     *      BI_NOT_BI:   Indicates that the cmd provided as input is not built
     *                   in so it should be sent to your fork/exec logic
     *      BI_EXECUTED: Indicates that this function handled the direct execution
     *                   of the command and there is nothing else to do, consider
     *                   it executed.  For example the cmd of "cd" gets the value of
     *                   BI_CMD_CD from rsh_match_command().  It then makes the libc
     *                   call to chdir(cmd->argv[1]); and finally returns BI_EXECUTED
     *      BI_CMD_*     Indicates that a built-in command was matched and the caller
     *                   is responsible for executing it.  For example if this function
     *                   returns BI_CMD_STOP_SVR the caller of this function is
     *                   responsible for stopping the server.  If BI_CMD_EXIT is returned
     *                   the caller is responsible for closing the client connection.
     * 
     *   AGAIN - THIS IS TOTALLY OPTIONAL IF YOU HAVE OR WANT TO HANDLE BUILT-IN
     *   COMMANDS DIFFERENTLY. 
     */
    Built_In_Cmds rsh_built_in_cmd(cmd_buff_t *cmd)
    {
        (void)cmd; // Suppress unused parameter warning
        return BI_NOT_IMPLEMENTED;
    }