Skip to content
Snippets Groups Projects
Commit b2b3368e authored by Philip Monaco's avatar Philip Monaco
Browse files

remove deleted files

parent f8e9be04
Branches
No related tags found
No related merge requests found
Pipeline #1621 passed
Showing
with 0 additions and 149 deletions
File deleted
File deleted
from sklearn import tree
from sklearn.preprocessing import StandardScaler
def load_algorithm(algorithm):
# normalize dataset for easier parameter selection
# estimate bandwidth for mean shift
# bandwidth = cluster.estimate_bandwidth(X, quantile=0.3)
# connectivity matrix for structured Ward
# connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)
# make connectivity symmetric
# connectivity = 0.5 * (connectivity + connectivity.T)
# # Generate the new colors:
if algorithm=='MiniBatchKMeans':
model = tree.DecisionTreeClassifier()
# elif algorithm=='Birch':
# model = cluster.Birch(n_clusters=n_clusters)
# elif algorithm=='DBSCAN':
# model = cluster.DBSCAN(eps=.2)
# elif algorithm=='AffinityPropagation':
# model = cluster.AffinityPropagation(damping=.9,
# preference=-200)
# elif algorithm=='MeanShift':
# model = cluster.MeanShift(bandwidth=bandwidth,
# bin_seeding=True)
# elif algorithm=='SpectralClustering':
# model = cluster.SpectralClustering(n_clusters=n_clusters,
# eigen_solver='arpack',
# affinity="nearest_neighbors")
# elif algorithm=='Ward':
# model = cluster.AgglomerativeClustering(n_clusters=n_clusters,
# linkage='ward',
# connectivity=connectivity)
# elif algorithm=='AgglomerativeClustering':
# model = cluster.AgglomerativeClustering(linkage="average",
# affinity="cityblock",
# n_clusters=n_clusters,
# connectivity=connectivity)
File deleted
File deleted
File deleted
File deleted
import numpy as np
import math
from utils.data_processing.synthetic import synthetic_dataset
from bokeh.io import curdoc, show, output_notebook
from bokeh.layouts import column, row
from bokeh.models import ColumnDataSource, Select, Slider, Plot, Scatter
from bokeh.palettes import Spectral6
from bokeh.plotting import figure
spectral = np.hstack([Spectral6] * 20)
n_clusters_p_class = 1
def update_samples_or_dataset(attrname,
old,
new,
# dataset_select,
# samples_slider,
# classes_slider,
# features_slider,
# inf_slider,
# source
):
global x, y
dataset = dataset_select.value
n_samples = int(samples_slider.value)
n_classes = int(classes_slider.value)
n_features = int(features_slider.value)
n_inf = int(inf_slider.value)
if n_inf > n_features:
n_features = n_inf
features_slider.update(value=n_inf)
if n_classes * n_clusters_p_class > 2**n_inf:
# n_inf = math.floor(math.sqrt(n_classes*n_clusters_p_class)) + n_classes % 2
n_inf = (math.ceil(math.log2(n_classes)))
n_features = n_inf
# print("this is v", n_inf)
inf_slider.update(value=n_inf)
features_slider.update(value=n_features)
x, y = synthetic_dataset(dataset, n_samples, n_inf, n_features, n_classes)
colors = [spectral[i] for i in y]
source.data = dict(colors=colors, x=x[:, 0], y=x[:, 1])
\ No newline at end of file
import numpy as np
from sklearn import datasets
class SyntheticData:
def __init__(self,
dataset='Make Classification',
n_samples=1500,
n_features=4,
n_classes=3,
n_inf=2):
self.dataset = dataset
self.n_samples = n_samples
self.n_features = n_features
self.n_classes = n_classes
self.n_inf = n_inf
def generator(self):
if self.dataset == 'Blobs':
return datasets.make_blobs(n_samples=self.n_samples,
random_state=8)
elif self.dataset == 'Make Classification':
return datasets.make_classification(n_samples=self.n_samples,
n_features=self.n_features,
n_informative=self.n_inf,
n_redundant=0,
n_clusters_per_class=1,
n_classes=self.n_classes,
random_state=8)
# if dataset == 'Noisy Circles':
# return datasets.make_circles(n_samples=n_samples,
# factor=0.5,
# noise=0.05)
# elif dataset == 'Noisy Moons':
# return datasets.make_moons(n_samples=n_samples,
# noise=0.05)
# elif dataset == 'Multilabel Classification':
# return datasets.make_multilabel_classification(n_samples=n_samples,
# n_features=n_features,
# n_classes=n_classes,
# random_state=8)
elif self.dataset == "No Structure":
return np.random.rand(self.n_samples, 2), None
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment